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Invariant Cubature Kalman Filtering-based
visual-inertial odometry for robot pose estimation

Xiaoyue Sang, Jingchao Li, Zhaohui Yuan, Xiaojun Yu*, and Jingqin Zhang, Jianrui Zhang, and Pengfei
Yang

Abstract— To maintain mechanistic stability while tracking the designated walking route, a robot must be cognizant of
employed posture. Generally, visual-inertial odometer (VIO) is utilized for robot state estimation, however, the traditional
Cubature Kalman filter VIO (CKF-VIO) cannot transfer rotational uncertainty and compensate for the system’s processing
error. To effectively improve the accuracy and stability of robot rigid body pose estimation, this paper proposes a matrix
Lie group representation-based CKF framework which characterizes the uncertainty prompting in robotic motion while
eliminating the VIO system internalization errors. The robot state, consisting of inertial measurement unit (IMU) pose,
velocity, and 3D landmarks’ positions, is deemed to be a single element of a high-dimensional Lie group SE2 + p(3), while
the accelerometers’ and gyrometers’ biases are appended to the state and estimated as well. The algorithm is validated
by simulations with Monte Carlo and experiment. Results show that the CKF-VIO with a high-dimensional Lie group can
improve the accuracy and consistency of robot pose estimation.

Index Terms— Vision sensors; IMU; VIO; CKF; state estimation; matrix Lie group

I. INTRODUCTION

ACCURATE self-position estimation is the basis for the
robot control and planning. However, the information

obtained through a single positioning sensor is limited, which
eventually leads to regressed accuracy and sub-par stability. A
visual-inertial odometer (VIO) realizes robot’s posture com-
putation by integrating inertial and visual information for its
complementary position estimation [1]-[5]. With the devel-
opment of Micro Electro Mechanical Systems IMU (MEMS
IMU), the VIO system has become advantageous for its low
power consumption and miniaturization. Currently, VIO is
one of the state-of-the-art positioning methods in complex
environments without any Global Positioning System (GPS),
and now has been widely used in mobile robots, unmanned
aerial vehicles, and handheld devices. Due to strong VIO
nonlinearity, however, it is difficult to reduce the system
state uncertainty, eliminate the accumulation of system process
errors, and improve the pose estimation accuracy continuously
[6]-[7].

The purpose of VIO is to accurately estimate the state
of the mobile robot at each moment by employing filter-
ing or optimizing methods based on the measurement and
observed information. Under the Bayesian framework, the
optimal solution to the nonlinear filter estimation is to ob-
tain a complete description of the state posterior probability
distribution function, however, since the complete description
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requisites an overflow of parametric calculations and extensive
operations, it is infeasible to be implemented in engineering
practice. Thus, many suboptimal approximation methods have
been proposed, such as the Extended Kalman filter (EKF)
[8], particle filter (PF), or unscented Kalman filter (UKF) [9],
CKF [10]. In the traditional EKF-VIO algorithm, many feature
points have been used as the state quantity, which results in
a high filter dimension and a large amount of calculations.
The UKF-VIO algorithm employs the basic framework of
KF, unequally, it uses first-order linearization and unscented
transformation (UT) to approximate the nonlinear functions
and posterior of the nonlinear system state, respectively. Al-
though the distribution function improves the state estimation
accuracy, its filtering performance is poor or even divergent
when dealing with high-dimensional VIO problems. CKF-
VIO is also a nonlinear Gaussian filtering-based scheme, and
it uses the third-order Spherical-Radial rule to approximate
the Gaussian weighted integral. The weight of the cubature
sampling point is always positive, and there is no non-positive
definite covariance. When dealing with high-dimensional non-
linear filtering problems, the complete numerical stability of
CKF is conducive to maintaining a good estimation accuracy,
and thus, it is regarded as ideal filtering in the approximate
Gaussian integral.

For state estimation, the rotation of a rigid body is one
of the main factors that cause the system’s nonlinearity. The
representation of robot rotation mainly comprises Euler angle,
rotation matrix, Quaternion, and Lie algebra, etc. The prob-
ability distributions on SE(3), and their role in control and
estimation, have been well studied in recent years [11]-[13]
[14,15]. Filters that use matrix Lie groups to represent state
variables, such as the Invariant EKF (InEKF) [16], have also
been designed and used for nonlinear state estimations. The
filters combine symmetry preservation theory and EKF and
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could effectively improve the consistency of system estima-
tion. Specifically, Bonnabel applied InEKF to the SLAM field
first [17], while Barrau used the right InEKF in 2D SLAM,
and proved its effectiveness in consistency improvement [16].
More recently, InEKF has also been used for the 3D visual-
inertial navigation system (VINS) [18]-[19]. However, in the
implementation part, landmarks are removed from the state.
Heo et.al. proposed right Invariant multistate constraint KF
(RI-MSCKF) that combined InEKF with MSCKF, improving
the accuracy and consistency of pose estimation in VIO [12].
To reduce the truncation error caused by the linearization
of the highly nonlinear function in the InEKF, Brossard
et.al. then used the unscented transformation (UT), namely
UKF-LG, to achieve accurate pose estimation [13]. From the
numerical integration perspective of UT, it could be observed
that the stability factor scales linearly with dimension, and
thus, significant perturbations would be induced in numerical
estimations of moment integrals once the dimension goes
beyond four [10]. In addition, it is also impossible to formulate
a square-root UKF with numerical advantages like SRCKF.
When a negatively weighted sigma point is used to update any
matrix, the resulting down-dated matrix may possibly be non-
positive definite. Hence, errors may occur when executing a
‘pseudo’ square-root version of UKF in a limited word-length
system [10].

A. Contributions of this paper

To address the problem of robot state estimation in VIO,
this paper proposes a right-invariant VIO algorithm, namely,
Right-CKF-LG, under the framework of CKF. Right-CKF-LG
can be treated as a CKF-based transformation of Right-InEKF
[16], yet with the advantage of being more general than Right-
InEKF. Right-CKF-LG avoids the complex computation of
Jacobians, especially in the Invariant EKF framework, wherein
Jacobians are defined with respect to the Lie structure [16].
Right-CKF-LG mainly consists of two components, of which
one is the Lie group structure proposed in the field of invariant
filtering [16], and the other is the Square Root CKF (SRCKF)
[10]. The main contributions of this paper are summarized as
follows,

(1) A Right-CKF-LG-based VIO system is proposed and
exploited to address the shortcomings of UT, which is unstable
in dealing with high-dimensional system states.

(2) The CKF Lie Group (CKF-LG) is applied for state
estimation by expanding the state space with the bias vector.
The concepts, such as cubature point, state mean, and variance,
are extended from Euclidean space to manifold space. The
system state variables, including the position, orientation,
velocity, and spatial 3D feature points, which are represented
by the high-dimensional matrix Lie group, are used to achieve
accurate robot pose estimation.

(3) A right invariant VIO algorithm leveraging Lie Group
representations is proposed. The formulation of the time and
measurement updates of the proposed algorithm are explained
in detail.

B. The structure of the paper
The organization of this paper is as follows. Section II

describes the mathematical model of VIO, including system
dynamics models and measurement models. Section III in-
troduces the Lie group state variables and uncertainty first,
and then presents the left-invariant and right-invariant CKF
form of the matrix Lie group representation, respectively.
Section IV illustrates the detailed Right-CKF-LG for pose
estimation in VIO. We have exploited Monte Carlo to simulate
the performance of the proposed state estimator in Section V.
The EuRoc MAV dataset [20] is used to compare the pose
errors of different algorithms in Section VI. Finally, Section
VII concludes the whole paper.

II. VIO PROBLEM MODELING

A. Dynamical Model
Most robots are equipped with an IMU, which consists of

three orthogonal linear accelerometers and three orthogonal
gyroscopes, to measure linear acceleration a and angular
velocity ω. The state to be estimated includes the robot’s
position x ∈ R3, orientation R ∈ SO(3), velocity v ∈ R3,
IMU bias bω ∈ R3, ba ∈ R3, and the 3D position of
landmarks p1, ...,pp ∈ R3 in world frame W. The dynamics
of this VIO system could be expressed as,

Body state dynamics,
ẋ = v

Ṙ = R (ω − bω + wω)×
v̇ = R (a− ba + wa) + g

(1)

IMU biases dynamics,{
ḃω = wbω

ḃa = wba

(2)

Landmarks dynamics ,

{ṗi = 0, i = 1, . . . , p (3)

where the IMU bias dynamics are modeled as typical ”Brow-
nian motion”, i.e., the derivative is Gaussian white noise to
capture the slow time-varying nature of these parameters. a
and ω are used as noisy and biased inputs to the system. (ω)×
represents the obliquely symmetric matrix related to the cross
product of the vectors ω. g is the acceleration of gravity.

The various white Gaussian continuous time noises can be
stacked as,

w =
[

wT
w wT

a wT
bw

wT
ba

]T
(4)

where w is centered with autocorrelation E(w(t)w(s)) =
Wδ(t− s).

B. Measurement model
Due to the influence of noises, the process error increases

rapidly over time when relying solely on the IMU for pose
estimation. To obtain a more accurate robot stature, VIO uses
the camera’s observation information to update the filter. In
addition to IMU measurements, a robot also obtains visual in-
formation from the calibrated monocular camera that is rigidly
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connected with the IMU. The camera observes and tracks the
landmarks through a standard pinhole model [25]. The i-th
landmark observed through the camera can be demoted as,

yi =
1

yiw

[
yiu yiv

]T
+ ni

y, 1 ≤ i ≤ p, (5)

where yi is the normalized pixel position measurement of the
landmark, p is the landmark number. ny ∼ N (0,N) represents
pixel image noise. The landmark is described in the world
frame W. To calculate the pixel coordinates of its projection,
it is necessary to first convert the landmark to the camera frame
C through coordinate transformation,

yi =
[
yiu yiv yiw

]T
= RT

C

(
RT (pi − x)− xC

)
(6)

where the term on the right corresponds to the distance from
the landmark to the camera represented in C. RC is the known
rotation matrix, xC is the known translation mapping from the
body frame to the C.

C. Robot state estimation problem
According to the probabilistic dynamical model shown by

Eqs. (1)-(3) and the visual landmark measurement model
denoted by Eq. (5), our main objective of robot state estimation
is to compute the state probability distributions in a high-
dimensional system.

III. CKF ON LIE GROUP

A. Matrix Lie groups and their random variables
We assume that a matrix Lie group is G ⊂ RN×N , which

is a subset of square invertible matrices. Lie algebra g is
related to Lie groups. And we define the exponential mapping
Rdimg → G of the Lie group in Eq.(7), log : G → Rq , which
leads to Eq.(8),

exp(ξ) = expm (ξ∧) (7)

log(exp(ξ)) = ξ (8)

where expm(·) is the exponential mapping of the n×n matrix.
Matrix Lie groups can be represented in Euclidean space Rq

by exponential mapping, q = dim(G). In fact, for any element
χ ∈ G, the tangent space vector at that point corresponds to
it, called a Lie algebra, to associate a matrix Lg(ξ) = ξ∧ in
the tangent space at I. Consequently, for random variables in
Lie groups, we use the corresponding Lie algebra exponential
mapping to describe the uncertainty [14]. ξ is the bias factor
describing the uncertainty of a variable.

B. CKF-LG Description
By representing the state error as a variable of a Lie algebra

ξ, we can establish a left-invariant CKF and a right-invariant
CKF for any state that evolves on a Lie group, both filters
obey the uncertainty representation described above.

1)Right-CKF-LG: The state is modeled as Xn ∼
NR

(
X̄n,Pn

)
, the state mean is X̄n, and the deviation is ξ ∼

N (0,Pn), i.e. using the Right-invariant form of uncertainty
[13], for more details, please see [13]. In particular, the
consistency properties of EKF-VIO take a right-invariant form,

see [18]. Therefore, we have only demonstrated the Right-
invariant form in detail.

2)Left-CKF-LG: Similarly, the state is modeled as Xn ∼
NL

(
X̄n,Pn

)
, i.e., the left-invariant form of uncertainty [13].

During the state transfer process, when the estimated state
contains not only a matrix χ belonging to the Lie group but
also the IMU bias vector b, we can easily apply CKF-LG
by expanding the state space, i.e., the bias vector is attached
to the state, (χ,b). b can be represented as b = b̄ + b̃, b̄
and b̃ being the mean and a random deviation, respectively.
Therefore, the mean of the state variables of the whole system
is X̄ = (χ̄, b̄), and the random deviation vector is σ = (ξ, b̃).
χ̄ ∈ G represents the mean value of χ. The Lie group variables
are processed by the CKF-LG method, while the IMU bias
vector is processed by the traditional CKF method. The filter
consists of two steps: time update and measurement update,
as shown in Algorithm 1.

Algorithm 1: Left and Right CKF on Lie groups

input : χ̄, b̄, X̄,u,Q,Y,N;
1 χ̄, b̄, X̄← Propagation(χ̄, b̄, X̄,u,Q);
2 if received measurement then;
3 χ̄, b̄← Update(χ̄, b̄,Y,N);

output: χ̄, b̄;

IV. RIGHT-CKF-LG FOR POSE ESTIMATION

The Right-CKF-LG constructs the estimated state
(x,R,v,bω,ba,p1, ...,pp) into a high-dimensional special
orthogonal group matrix, selects the cubature points using
the third-order Spherical-Radial rule, and transfers the state
mean and variance through cubature transformation, which
are computed in the tangential space of the manifold. This
section introduces the time update and measurement update
steps to transfer the uncertainty of Lie group variables for
realizing the pose estimation of robot.

A. Time Discrete
To apply CKF to a Lie group, it is imperative to discretize

the dynamics, and the state space must be (partially) embedded
in a matrix Lie group. We consider a discrete-time dynamical
system as

Xn+1 = f (Xn,un,wn) , (9)

where un is a known input variable.
Considering discrete measurements of this dynamical sys-

tem,
yn+1 = h (Xn,nn) . (10)

wn ∼ NR

(
X̄n,Qn

)
and nn ∼ N (0,Nn) are Gaussian

white noises.

B. System State Variables
In the robot state estimation process, it is necessary to clar-

ify the state variable structure transmitted by the VIO system.
(x,R,v,p1, ...,pp) are constructed as a high-dimensional
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Euclidean group matrix, and the matrix structure of χ ∈
SE2+p(3) as

χ =

[
R v x p1 · · · pp

0(p+2)×(3) I(p+2)×(p+2)

]
(11)

The dimension of the Lie group and Lie algebra is 3 +
3(2 + p). Uncertainty, that is, the corresponding deviation

variable is
[
ξTRξ

T
v ξ

T
x ξ

T
p1. · · · ξ

T
pp

]T
∈ R3p+9, where ξTR,

ξTv and ξTx are the deviation components corresponding to
orientation, velocity and position, respectively. ξTp1. · · · ξ

T
pp

are
the deviation components corresponding to the positions of p
feature points.

Mapping it to Lie algebra by Lg : ξ 7→ Lg(ξ) = ξ∧, the
antisymmetric matrix structure corresponding to the vector is,

ξ =
[
ξTR ξTv ξTx ξTp1

· · · ξTpp

]
∈ R3p+9 (12)

The exponential mapping expression is,

exp ξ = I+ξ∧+
1− cos (‖ξR‖)

‖ξR‖
ξ∧2+

‖(ξ)R‖ − sin (‖ξR‖)
‖ξR‖3

ξ∧3.

(13)

C. Evolving the state in a Lie group
The state can be partially embedded in a Lie group, let χn

be the matrix of the Lie group. Using this embedding, the
state can be sequentially represented as (χn,bn), let the bias
vector be b =

[
bT
ω ,b

T
g

]T ∈ R6. The deviation on χn can be
calculated in [13] in detail.

Considering input vector as the input vector u =[
ωT aT

]T
, uncertainty and discrete-time dynamical

model associated with Right-CKF-LG can be portrayed as:
Uncertainty,{

χn = exp(ξ)χ̄n

bn = b̄n + b̃
,

[
ξ

b̃

]
∼ N (0,Pn) , (14)

Dynamics,

{χn,bn = f (χn−1,un − bn−1,wn) , (15)

Observations,{
Yn =

[
yT
1 · · · yT

p

]T
:= Y (χn,nn)

yi = 1
yi
w

[
yiu yiv

]T
+ ni

y, i = 1, . . . , p
. (16)

where
(
χ̄n, b̄n

)
∈ R3p+15 represents the mean of the es-

timated state, (Pn) ∈ R(3p+15)×(3p+15) is the covariance
matrix that defines the state uncertainty (ξ, b̃). Yn contains the
observations of landmarks and the associated discrete Gaussian
noise wn ∼ N (0,Q).

D. Time update
The CKF is used to realize the time update. First, construct

the sampling cubature points to describe the distribution of the
state variables, transfer them through the IMU motion model,
and finally the cubature points are weighted and summed to
obtain the transferred state mean and variance. At time k, the
mean value of the state variable of the system is (χ̄k, b̄k),
the random deviation vector is σk =

[
ξk b̃k

]T
with the

Gaussian distribution of variance Pk, and the square root of
the covariance is Sk, satisfies Pk = SkST

k .

1) Construct sampling cubature point: The control input of
the system is uk =

[
ωk ak

]
, the corresponding noise

variance and the square root of its covariance is Qu and Su.
To calculate the sampling cubature point, the system input and
its covariance square root factor are augmented,

Xk
aug = [Xk,uk]

T

Sk
aug =

[
Sk

Su

]
, (17)

The dimension of the square root of the covariance Saug
after augmentation is ls = 3p+ 21. According to the cubature
point sampling rule, the sample process as{

ζj
}

=
√
lsSaug [1]j , j = 1, . . . , 2ls, (18)

The structure of ζ includes bias vector ξjk, IMU bias vector

b̃j
k and input noise nj

u, i.e., ζi =
[
ξjk, b̃

j
k,n

j
u

]T
. According to

the cubature law, since the Lie group matrix in the manifold
space is not closed to addition, so the

⊕
is defined, the

cubature point is in the form of X̄aug′
⊕
′ζj . The IMU zero

bias and the input satisfy the Euclidean space addition, χ
adopts the exponential mapping to describe the process of
superimposing a deviation component near the mean value.
The specific calculation form of the system variable cubature
point is,

X̄aug ,k ⊕ ζj =


exp

(
ξjk

)
χ̄k

b̄k + b̃j
k

uk + nj
u

, j = 1, . . . , 2ls, (19)

2) Transfer cubature point: The cubature point set is trans-
ferred through the IMU motion f(·), and the transferred
cubature point set is,

IMU motion equations,

f(·) =

 xk+1 = xk + vk∆k + 1
2ak∆k2

Rk+1 = Rk · exp (ωk∆k)
vk+1 = vk + ak∆k,

(20)

[
χj

k+1|k bj
k+1|k

]
= f

(
exp

(
ξjk

)
χk,uk − bj

k,n
j
u

)
, (21)

where the structural form of the state cubature point is χj
k =

exp
(
ξjk

)
χk =

[
Rj

k vj
k xI.k p1,j

k · · · pp,j
k

]
, and

the corresponding noise is nj
u =

[
nj
ω nj

a

]
.

The j cubature point is transferred through the motion
equations, and the main update transpires in IMU component.

W
I Rj

k+1|k = W
I Rj

k · exp
[(

Iωk − b̄ω,k − b̃j
ωk + nj

ω

)
∆k
]
,

Wvj
k+1/k = Wvj

k +
[
W
I Rj

k

(
Iak − b̄a,k − b̃j

a,k − nj
)

+ g
]
·∆k

Wxj
k+1k = Wxj

k + Wvj
k+1|k ·∆k

(22)
W
I Rrepresents the transfer from the I frame to the W frame

to describe the pose of the IMU in W frame.
Transferring the mean value of the state variable, the IMU

pose and the mean value of deviation at k+1 time are,[
X̄k+1|k b̄k+1|k

]
= f

(
χ̄k,uk − b̄k, 0

)
, (23)
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3) Calculation of the square root factor of covariance: In
order to calculate the square root of the covariance of the
state variable after updating, it is necessary to calculate the

transmitted deviation vector, which is
[
ξ̄k+1|k b̃k+1|k

]T
.

The deviations are,

ξjk+1|k =
1√
2ls

log
(
χj

k+1|kχ̄
−1
k+1|k

)
, j = 1, · · · , 2ls, (24)

b̃j
k+1|k =

1√
2ls

log
(
bj
k+1|k − b̄j

k+1|k

)
, j = 1, · · · , 2ls,

(25)
By performing QR decomposition on the matrix composed

of the deviation and the noise covariance, the square root of
the covariance after updating can be calculated as:

QR ←
[
ξ1k+1k · · · ξ2lsk+1|k; b̃1

k+1k · · · b̃2ls
k+1|k; 0 Su

]
(26)

Sk+1|k = rT , (27)

Algorithm 2: Propagation function for Right-CKF-LG

input : χ̄, b̄,u,Q,N;
1 u← (u− b̄);// unbiased input
2 χ = χ̄;// save non propagated state
3 χ̄, b̄ = f(χ,u, 0);// propagate mean
4 X̄aug,k′ ⊕ ′ζj ≈

exp
(
ξjk

)
χ̄k

b̄k + b̃j
k

uk + nj
u

, j = 1, . . . , 2ls ;// cubature

points generation

5 χj
k+1|k,b

j
k+1|k ← f

(
exp

(
ξjk

)
χ̄k,uk − bj

k,n
j
u

)
;

6 ξjk+1|k ←
1√
2l

log
(
χj

k+1|kχ̄
−1
k+1|k

)
, j =

1, · · · , 2ls;// cubature points
propagation

7 QR ←[
ξ1k+1k · · · ξ2lk+1|k b̃1

k+1k · · · b̃2le
k+1|k; 0 Su

]
.

output: χ̄k+1|k, Sk+1|k.

E. Measurement update
The observation from feature points is used for the mea-

surement update of the filter. The image feature tracking
uses the Kanade-Lucas-Tomasi (KLT) algorithm. Assuming
that the number of tracking feature points at two consecutive
times is m, the observed structure form is in Eq. (16). Using
the cubature transformation method to obtain the observation
error of the tracking feature at k+1 time. Xk+1|k and Sk+1|k
obtained in the time update are first augmented by yk+1 and
the observed covariance square root factor SR,

Xk+1
aug = [Xk+1, 0]

T

Sk
aug =

[
Sk+1|k

SV

]
, (28)

where SV = chol(QV ) ∈ R2m×2m, QV is the observed
variance. The dimension of Sk+1

aug after augmentation is lm =

5p+ 15. In order to calculate the cubature point, sampling is
performed for Cj ,

Cj =
√
lmS

k+1
aug [1], j = 1, · · · , 2lm, (29)

where the structure of Cj is
[
ξjk+1|k b̃j

k+1kk
nj
V

]T
, j =

1, . . . , 2ls. Similar to the calculation in the time update, the
cubature point calculation process can be presented as:

X̄k+1
aug,k ⊕Cj =


exp

(
ξjk+1|1

)
χ̄k+1|k

b̄k+1|k + b̃j
k+1|k

nj
V

, j = 1, . . . , 2ls

(30)
where nV is the observed noise. Transfer cubature point by
the observation function Eq.(16), and the observation one is,

yj
k+1|k = h(exp(ξjk+1|k)χ̄j

k+1|k,n
j
V ), (31)

At the time k+l, the estimated observation feature ȳk+1|k
and the deviation of each observation cubature point ej can
be calculated,

ȳk+1|k =
1

2lm

2lm∑
j=1

yj
k+1|k, (32)

ej =
1√
2lm

(
yj
k+1|k − ȳk+1|k

)
, j = 1, · · · , 2lm, (33)

By performing QR decomposition on the matrix formed by
ej and the square root factor of the observed noise variance
SV , the square root of the observed covariance Sy is portrayed
by Eq. (35).

QR ←
[

e1 · · · e2lm ; 0 SV

]
(34)

Sy = rT , (35)

The cross-correlation covariance matrix between the state
and the observation is PX,y , and the Kalman Gain in mea-
surement update is ,

PX,y =
1

2lm

2lm∑
j=1

[
ξj , b̃j

]T (
yj − ȳ

)
, (36)

K = PX,y(ST
y )−1S−1y , (37)

The state deviation increment, the updated mean of the state
and the square root of the covariance are calculated in Eqs.(38-
42). [

δξ̄
δb̄

]
= K

(
yk+1 − ȳk+1|k

)
, (38)

χ =

[
χk+1|k+1

bk+1|k+1

]
=

{
exp(δξ)χk+1|k+1

b̄k+1|k+1 + δb
(39)

QR ← [

[
ξjk+1|k
b̃j
k+1|k

]
−Kej ; 0 SV ] (40)

Sk+1|k+1 = rT , (41)

Pk+1|k+1 = Sk+1|k+1S
T
k+1|k+1 (42)

Thus, the VIO system realizes the pose estimation of the
robot through the CKF. The cubature transformation method
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Algorithm 3: Update function for the Right-CKF-LG

input : χ̄, b̄,Y,Q,N;
1 Y0 = Y(χ̄,0);// see (21) and (5-6)
2 X̄k+1

aug,k′ ⊕ ′Cj ≈
exp

(
ξjk+1|k

)
χ̄k+1|k

b̄k+1|k + b̃j
k+1|k

yk+1 + nj
V

, j = 1, . . . , 2ls ;// cubature

points generation
3 χj = exp (ξ) χ̄;

4 yj
k+1|k ← h

(
exp

(
ξjk+1|k

)
χ̄k+1|k,n

j
V

)
;

// cubature points propagation
5 δξ̄, δb̄← QR′(Y0,YN,Yj, ξj ,N)
6 χ̄← exp

(
δξ̄
)
χ̄, b̄← b̄ + δb̄,

output: χ̄k+1, Kk+1,Pk+1.

is used to transfer the state variables and variance during
the whole process, avoiding the complicated Jacobian solving
process of the IMU motion equations and the observation
equations, while, the matrix Lie group performs cubature point
sampling, which extends the cubature transformation method
to manifold space. The state vector is represented by a high-
dimensional Lie group matrix, which has a explicit structure
than the hybrid representation.

V. SIMULATION RESULTS

A. Illustrative High-Dimensional Example

We consider a general form of the multi-quadric function,

y =
(√

1 + xTx
)p
, (43)

where x is an n-dimensional Gaussian random variable with
mean µ, and covariance Σ, while p takes values p =
1,−1,−3,−5. Our objective with this example is to use
different methods in order to compute the first two order
(uncentralized) moments with different dimensions and prior
information, namely (i) the UKF-LG, (ii) the InEKF, and (iii)
the Right-CKF-LG,

E(y) =

∫
Rn

(√
1 + xTx

)p
N (x;µ,Σ)dx,

E
(
y2
)

=

∫
Rn

(
1 + xTx

)pN (x;µ,Σ)dx

(44)

The Monte Carlo method with 10,000 samples is used to
obtain the optimal estimate. We use the Kullback Leibler (KL)
divergence to evaluate the filter estimated statistics against the
optimal statistics. µ is set to be zero, and covariance matrices
are randomly generated with diagonal entries being all equal
to σ2

0 for 50 independent runs.
Fig.1 plot the KL divergence of the InEKF and Right-CKF-

LG estimations, respectively, when the dimension n increases
for σ2

0 = 1. However, since UKF-computed covariance matrix
is not guaranteed to be positive with increasing dimension, the
unavailability of the square-root covariance causes the UKF

to halt, and thus, we have not presented the results for UKF-
LG. It is evident from Fig. 1, both InEKF and Right-CKF-
LG estimations degrade when the dimension increases. When
p changes from 1 to -5, we can also notice the degradation
as expected. CKF uses the spherical-radial cubature rule to
numerically compute the moment integrals in the form non-
linear function. The integrand is obtained from the product of a
multi-quadric function and the standard Gaussian density over
the radial variable. It has a peak occurring at a distance from
the origin proportional to

√
n. On the other hand, the cubature

points are located at a radius that scales with
√
n. Note that the

third-degree spherical-radial rule is exact for polynomials of
all odd degrees even beyond three. These may be the reasons
for the increased accuracy obtained using the Right-CKF-LG.
Furthermore, for all p being considered, the InEKF estimation
is inferior to that of Right-CKF-LG.

Fig. 1. Variation of KL divergence as dimension n increases, black line-
InEKF, red line-Right-CKF-LG.

B. Effect of Noise on Estimates
We further explore the influences of estimation errors to

Right-CKF-LG when the Gaussian nature of measurement
noises is violated. For such a purpose, we let the measurement
noise follow a Gaussian mixture as below,

nk ∼ 0.5N (0, R1) + 0.5N (0, R2) (45)

We employ the root-mean square error (RMSE) of posi-
tion, orientation, and velocity to evaluate the nonlinear filter
performances. The RMSE generates a combined measure of
the bias and variance of the filter estimation. Since UKF halts
when the state dimension is high, we have not presented the
UKF results here. Not surprisingly, as can be seen from Figs.
2(a), 2(b) and 2(c), both filters diverge due to a mismatch
between the filter-design assumption and the non-Gaussian
nature. It can also be perceived that during the divergence,
the true RMSEs of both filters exceed their corresponding
estimated values. Although there are some differences between
covariance estimations for the two filters, it’s worth noting
that unlike InEKF, Right-CKF-LG improves the performance
after a short period of divergence, and it does not allow
estimation errors to accumulate continuously, thereby avoiding
an immediate ‘blow-up’.
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Fig. 2. Effects of noise distribution on estimations. (a) RMSE in position, true RMSE (black solid line-InEKF, red solid line-Right-CKF-LG), filter-
estimated RMSE (black dashed line-InEKF, red dashed line-Right-CKF-LG) . (b) RMSE in orientation. (c) RMSE in velocity.

C. The advantage of using Lie groups to represent
uncertainty in consistency and accuracy

To verify the theoretical contributions of this paper, 50
Monte Carlo simulations capitalized to juxtapose SRCKF with
Right-CKF-LG, considering a robot equipped with an IMU
and a camera for sufficient 6-DOF motion. In a simulated
environment, the camera can observe landmarks with sufficient
overlap between consecutive frames. For robust estimation, we
only use landmarks for the update step if they are captured
more than 5 times by cameras in the current range. In each
round of Monte Carlo simulation, the initial estimation is set
to the ground truth. The IMU and camera measurements are
based on random noise generated by the same trajectory. The
simulation results are shown in Fig. 3 and Fig. 4.

Fig. 3. NEES of Monte Carlo simulations.

The root mean squared error (RMSE) and normalized
estimation error squared (NEES) are used to indicate the es-
timation performance. RMSE evaluates accuracy while NEES
evaluates consistency. Since Right-CKF-LG is invariant to
random translations and rotations around the direction of
gravity, it prevents unintended information gain compared to
SRCKF, therefore, Right-CKF-LG significantly outperforms
SRCKF, especially in terms of consistency.

For each condition under different noise level, 100 Monte
Carlo simulations are performed. For every simulation, the
landmarks are incrementally added into the state vector while

Fig. 4. RMSE of Monte Carlo simulations.

TABLE I
CONSISTENCY UNDER DIFFERENT NOISE LEVELS

δd = 1%, δb = 1% Right-CKF-LG SRCKF UKF-LG InEKF SE(3)-CKF
RMSE of position (m) 0.25 0.45 0.29 0.32 0.65

RMSE of orientation (degree) 0.0062 0.0072 0.0071 0.0066 0.0083
NEES of pose 1.09 10 1.13 1.37 1.70

δd = 5%, δb = 5% Right-CKF-LG SRCKF UKF-LG InEKF SE(3)-CKF
RMSE of position (m) 1.20 3.97 1.33 2.20 3.90

RMSE of orientation (degree) 0.029 0.044 0.031 0.045 0.041
NEES of pose 1.09 92 1.14 3.30 3.10

the initial covariance of robot is set to be zero matrix. The
simulation results are summarized in Table I, where σd and
σb are the odometry and observation noise levels, respectively,
satisfying Qn = σ2

d diag
(
|un,1|2 , . . . , |un,k|2

)
and Ni

n =

σ2
d diag

(∣∣Zi
n,1

∣∣2 , . . . , ∣∣∣Zi
n,k

∣∣∣2) with Zi
n being the ground

truth of the coordinates of landmark.
As shown in Table I, the estimations of SRCKF and SE(3)-

CKF are less effective in terms of consistency even under
low noise level (δd = 1%, δb = 1%). This response is to be
expected since both methods have no invariance property to
deterministic rigid body transformation or stochastic identity
transformation. Alternatively, when under high noise levels
(δd = 5%, δb = 5%), both UKF-LG and InEKF do not
perform optimally and subjected to larger linearization errors
as compared with Right-CKF-LG in their propagation steps
due to the coordinate transformation applied to the landmarks.
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VI. EXPERIMENTAL RESULTS

This section verifies the performance of the CKF repre-
sented by the high-dimensional matrix Lie group in VIO.
In our study, we have exploited benchmark public EuRoc
MAV database. To compute the robot orientation and position
errors, we have compared analyzed algorithms against UKF-
LG algorithm, SE(3)-UKF algorithm [21], and InEKF. The
Several algorithms use the filtering method to realize VIO,
and all use the Lie group method to represent the motion.

A. Performance comparison of various algorithms under
the same number of observed features

Fig. 5 describes the running results of Right-CKF-LG with
EuRoc dataset. The black line represents the real trajectory,
while the blue line represents the trajectory estimated by the
proposed algorithm. As shown in the figure, the estimated
trajectory and the real trajectory basically coincide for posi-
tion error diversification. However, since the visual odometry
has no closed-loop detection, the position error accumulates
continuously, and the movement changes rapidly at the sharp
turn of the robot, and the error accumulation is large.

Fig. 5. The estimated trajectories from Right-CKF-LG.

Fig. 6(a) and 6(b) show the average error between the
orientation, the estimated position and the real trajectory.
Initially, the orientation error is similar for all four algorithms,
then it increases at length, the growth rate and fluctuation range
of the proposed Right-CKF-LG are significantly lower than the
others. Similarly, as the running time increases, the cumulative
error of the estimated position amplifies. The average error of
the Right-CKF-LG algorithm starts to be slightly lower than
the other three algorithms after 17s of operation, which is
evident in Fig. 6(a). After running for 35s, the average error
is significantly lower than the other three algorithms, as shown
in Fig. 6(b). The results show that the proposed algorithm is
effective in improving the performance of pose estimation.

Fig. 7 shows the velocity estimates, which again proves
that the integrated system improves the localization accuracy.
Right-CKF-LG is invariant to stochastic rigid body transfor-
mation, and thus, performs the best among opted algorithms.
Fig. 8 explicitly indicates that, Right-CKF-LG also has con-
sistency properties in terms of the 95% confidence bound.

Fig. 6. Comparison of pose errors of different algorithms, (a) the
orientation, (b) the estimated position.

Fig. 7. Comparison of estimated velocities. (a) is the x-direction velocity.
(b) is the y velocity.(c) is the z velocity.
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Fig. 8. Comparison of pose estimation in terms of consistency.

TABLE II
TIME-CONSUMING IN STATE UPDATE (UNIT: S)

Algorithms Number of observation features
20 25 30 35 40

UKF-LG 7.6542 10.1269 13.1574 18.7296 23.3143
SE(3)-UKF 7.7998 10.1133 13.8469 17.7949 22.9073
InEKF 5.3353 8.4114 11.6172 13.6051 17.7390
Right-CKF-LG 7.6021 10.0811 13.0762 18.4982 23.2170

B. Influences of different observation features on state
estimation

The dimension of the state variable in the Right-CKF-LG
is 3m + 15, with m being the number of observed features,
while the number of sampling cubature points is twice that
of the dimension of the augmented state variable. Therefore,
the number of tracking feature points directly affects the
algorithm operation time, while the transmitted observation
noise impacts on the VIO.

We have conducted several experiments to verify the im-
pacts of observation features on algorithm performances, in-
cluding the estimation accuracy of position, orientation, and
the average time-consuming of filtering state update. The
RMSE of the entire pose trajectory, the update time of different
algorithms are evaluated when the number of observed features
is set to be 20, 25, 30, 35 and 40, respectively.

Fig. 9. RMSE of different observation features, (a) Orientation RMSE ,
(b) Position RMSE.

Results in Fig.9 show that Right-CKF-LG performs better
than the others in terms of pose estimation accuracy for
different observed features.

It can be seen from Table II that the time-consumption of the
four algorithms increases with increment in tracking feature
points. In aforementioned algorithms, InEKF takes the least
time with various observed features, while both UKFs and

CKFs require more computational power under different cases.
The propagation requires much more computational power
than the update for CKFs solutions, since the IMU (prop-
agation) frequency is much larger than the camera (update)
frequency. However, the estimation performance of InEKF is
not optimal.

For orientation estimation, the valued performance of Right-
CKF-LG is similar to when the feature numbers are 30 and
35, yet when the observed feature number is 35, the time-
consumption is increased by 51% in the updated step. Whereas
for position estimation, the position RMSE error is relatively
small when the observed features are 25 and 30, however,
the time consumption of the state update step is increased by
24%. From such results, we observe that too many or too few
observed features will degrade the estimation performances,
and thus, a reasonable number of observation features should
be selected to balance the estimation accuracy and the time-
consuming. In this study, we opted the feature number to be
30.

Based on the UKF theory on Lie groups, the invariant CKF
has the advantage of featuring a complete Lie group structure.
With a matrix Lie group representing the rotation of a rigid
body, the quaternion representation method over parameters
and normalization constraints can be avoided. In addition, the
proposed filter can be easily adapted to small modifications in
the model through parameters or other sensors. Furthermore,
it is necessary to fuse more sensory information to improve
the positioning accuracy and robustness.

VII. CONCLUSION

This paper studies accurate robot state estimation in VIO
system. To reduce system internalization errors and improve
the odometry robustness, an invariant CKF scheme combining
CKF and invariant filtering theory was proposed. By utilizing
the Lie group cubature transformation to extend CKF from
Euclidean space to the manifold space, the uncertainty of state
variable was transferred to avoid over-parameterization and
normalization constraints, while the filter instability caused by
growth in UKF state dimension was alleviated. Monte Carlo
simulations were conducted with a public dataset to compare
the proposed algorithm with the other ones for robot state
estimations. Acquired results demonstrated that the scheme
invariance largely impacts on the estimator consistency and
accuracy, and the proposed Right-CKF-LG scheme outper-
forms SRCKF, UKF-LG, InEKF, SE(3)-CKF for robot pose
estimation under different cases.
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