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Abstract: An Inertial Measurement Unit (IMU) is a significant component of a spacecraft, and its fault
diagnosis results directly affect the spacecraft’s stability and reliability. In recent years, deep learning-
based fault diagnosis methods have made great achievements; however, some problems such as
how to extract effective fault features and how to promote the training process of deep networks are
still to be solved. Therefore, in this study, a novel intelligent fault diagnosis approach combining a
deep residual convolutional neural network (CNN) and a data preprocessing algorithm is proposed.
Firstly, the short-time Fourier transform (STFT) is adopted to transform the raw time domain data
into time–frequency images so the useful information and features can be extracted. Then, the Z-score
normalization and data augmentation strategies are both explored and exploited to facilitate the
training of the subsequent deep model. Furthermore, a modified CNN-based deep diagnosis model,
which utilizes the Parameter Rectified Linear Unit (PReLU) as activation functions and residual
blocks, automatically learns fault features and classifies fault types. Finally, the experiment’s results
indicate that the proposed method has good fault features’ extraction ability and performs better
than other baseline models in terms of classification accuracy.

Keywords: IMU; deep learning; residual network; fault diagnosis

1. Introduction

Inertial Measurement Units (IMUs), which usually contain several sophisticated in-
ertial sensors such as gyroscopes and accelerometers, are the essential components of
spacecraft, e.g., satellites and launch vehicles [1]. IMUs can not only measure the three-axis
angular velocity as well as acceleration, but also autonomously establish the azimuth
and attitude reference of spacecraft under various complex environmental conditions [2].
Moreover, IMUs give the posture and position information of spacecraft and play a critical
role in providing feedback to the on-board controller. Thus, an IMU is directly relevant to
the performance of a spacecraft.

In order to monitor the working state and enhance the stability of IMUs, several fault
diagnosis methods have been proposed by researchers [3]. However, it is not appropriate
to conduct fault diagnosis directly in the outer space environment due to the fact that the
spacecraft is usually complex and usually has limited computation resources. At present,
one common fault diagnosis method is to mine telemetry data in the ground center. The
telemetry data measuring the status of in-orbit spacecraft are mainly produced by sensors
of IMUs and then transmitted to the ground telemetry center.

The traditional fault diagnosis procedure involves artificial feature extraction and fault
mode classification. The artificial feature extraction using signal processing algorithms
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consists of feature extraction and feature selection; nevertheless, it largely depends on suffi-
cient prior expert knowledge and abundant experience, which makes it time-consuming
and labor-intensive. The machine learning methods such as k nearest neighbor, decision
tree, Support Vector Machine (SVM) and Bayes, et al., are commonly utilized in the fault
classification procedure. However, as the volume of telemetry data grows rapidly, tradi-
tional machine learning-based fault classification methods show many limitations and poor
performance in diagnosis accuracy. Therefore, how to promote the diagnosis precision and
efficiency faced with heterogeneous massive data is still a difficult task.

In recent years, deep learning (DL) methods, which use a powerful non-linear fitting
mode to rapidly process large amounts of data and automatically extract features of a fault
mode, have attracted the research attentions of scholars from various areas. Deep learning
methods, such as Deep Belief Network (DBN), Sparse Autoencoder (SAE), convolutional
neural network (CNN), recurrent neural network (RNN), show superior fitting and learning
capability in fault diagnosis and greatly boost the diagnosis performance. However, most deep
learning methods, even the CNNs using local receptive fields, weight sharing and pooling,
are generally much harder to train than traditional machine learning methods. Moreover,
another challenge is that it becomes more and more difficult for deep learning-based fault
diagnosis methods to extract effective features and information directly from time-domain
signals because of the weak failure features of spacecraft in engineering scenarios.

To address these drawbacks, a novel intelligent fault diagnosis method for IMU
in spacecraft through a deep residual convolutional neural network with a short-rime
Fourier transform (STFT) is proposed in this paper. Firstly, to extract more distinguish
features, we utilize the STFT to process the raw signals from an IMU and achieve the
time–frequency features. Then, we employ several data augmentation strategies to make
the training datasets more diverse to eliminate the training difficulties and avoid overfitting
due to small sample problems. Finally, a novel deep model, which employs a residual
convolutional neural network, is constructed to extract fault model discriminative feature
representations automatically and identify the fault categories with high accuracy. The
main contributions of this article are as follows:

(1) A deep learning-based fault diagnosis model combining a novel data preprocessing
method and a residual convolution neural network is proposed. This method can not only
extract the fault characteristics of input signals end-to-end, but also lead the model to be
much easier to train.

(2) A data preprocessing algorithm for the telemetry data of IMUs in spacecraft is
proposed. This algorithm applies STFT to process the input data to obtain the time–
frequency representations. Then, Z-score normalization and data augmentation tricks are
explored and exploited to promote the training of the deep model.

(3) A novel residual convolutional neural network is constructed. Moreover, the Pa-
rameter Rectified Linear Unit (PReLU) is used to promote the non-linear feature extraction
capability of our model.

(4) Experimental results indicate that the proposed model has good fault features’ extrac-
tion ability and is superior to other state-of-the-art models in terms of classification accuracy.

The remaining part of this study is organized as follows. Related works and the
literature are reviewed in Section 2. Preliminaries including the convolutional neural
network, short-time Fourier transform and residual network are described in Section 3.
Section 4 describes the proposed fault diagnosis model in detail. Section 5 conducts the
experiment and gives result analysis. Finally, in Section 6, several conclusions are given.

2. Related Works
2.1. Fault Diagnosis Using Traditional Machine Learning

Data mining and traditional machine learning theories have been widely used in
spacecraft fault diagnosis based on telemetry data. The procedures of shallow machine
learning-based fault diagnosis methods are illustrated in Figure 1. Fault representations
and characteristics were artificially extracted from telemetry data initially. Then, these
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sensitive representations were elaborately chosen to train diagnosis models, which can
classify the fault types of spacecraft automatically.
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Among all the machine learning-based fault diagnosis methods, expert systems are
the most widely used approaches. If we can achieve sufficient experience and knowledge
about the diagnosis task in advance, then expert system-based methods could be applied
to identify the fault types in detail. I. Nakatani developed a diagnostic expert system for
GEOTAIL satellite to enable operators with little knowledge to diagnose the overall state of
satellite easily [4]. Z. Yang et al. [5] developed an expert system using fault tree analysis
for gear box and achieved a precise and quick diagnosis result. Y. Guo et al. [6] proposed
a novel fault diagnosis method, which used rules obtained through expert knowledge
and characteristics of the system. D. V. Kodavade et al. [7] presented a universal fault
diagnostic expert system method, which used object-oriented inference mechanism to
improve efficiency. However, the performance of expert system-based fault diagnosis
methods largely depends on the expert experience and knowledge, which is usually hard
to be obtained and expressed. Once there is a fault problem that does not match the expert
system, the diagnosis will fail. Moreover, the diagnosis knowledge set is hard to extend and
modify, which is not suitable for modern complex instruments and apparatus in spacecraft
with a huge number of sensors.

SVM is a computational learning algorithm and especially suitable for classification
tasks. Compared to the artificial neural network, SVM-based fault diagnosis approaches
are more explicable due to the fact that they are trained by minimizing the structural
risk instead of the empirical risk. This interpretability is extremely crucial in the fault
diagnosis of spacecraft. The SVM is generally used with other feature extraction methods.
The New Operational SofTwaRe for Automatic Detection of Anomalies based on Ma-
chine-learning and Unsupervised feature Selection (NOSTRADAMUS) by Centre National
d’Etudes Spatiales (CNES) uses machine learning methods to extract characteristics and one-
class SVM to classify anomalous data [8]. Sara K. Ibrahim et al. [9] used machine learning
methods to analyze the performance of Egyptsat-1 satellite launched April 2007 and SVM
to diagnose the fault models. M. L. Suo et al. [10] proposed an intelligent fault diagnosis
method for the power system of satellites. It utilized fuzzy Bayes risk to generate an optimal
feature subset and designed a classifier using SVM to identify faults. J. Shao et al. [11] used
the immune genetic method to adjust the parameters of SVM regression, and then applied
this method to detect the faults of a satellite attitude control system. In order to improve the
diagnosis accuracy of SVM-based models, several improved models have been proposed.
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ANN, which contains three types of components, i.e., input layer, hidden layers and
output layers and has powerful fault pattern classification abilities, is considered to be
the most commonly used algorithms in the field of fault diagnosis [12]. G. S. Naganathan
et al. [13] proposed an ANN method for diagnosing the condition of the power transformer
to predict the incipient faults as early as possible. Compared with ANN, the radial basis
function (RBF) network is much easier to train [14]. Zhang et al. [15] proposed a hybrid
model to choose the most useful and distinguished features and a weighted voting scheme
based on the radial basis function (RBF) network to classify the features.

Traditional machine learning-based fault diagnosis requires artificial feature extraction,
which leads to a huge labor cost. Furthermore, it is not suitable for the increasingly growing
data volume due to the low generalization performance.

2.2. Fault Diagnosis Using Deep Learning

The recent advancements of deep learning, big data and cloud computing have led
to major breakthroughs for multifarious problems including fault diagnosis tasks [16–20].
The deep learning methods shown in Figure 1 could learn discriminative patterns and
representations from raw input signals and obtain higher diagnosis accuracy than other
methods. The German Space Operation Center utilized the autoencoder to learn new
feature vectors from the input layer and then detect anomalies in an Automated Telemetry
Health Monitoring System (ATHMoS) [21]. As a modified model of RNN, Long Short-Term
Memory (LSTM) shows a powerful ability to extract features from time series telemetry data.
Hundman et al. demonstrated the viability and effectiveness of LSTM for predicting the
telemetry data of spacecraft in NASA and proposed a dynamic threshold setting algorithm
to enhance the detective accuracy of faults [22]. J. Chen et al. established a Bayesian
LSTM model to conduct anomaly detection for the imbalanced satellite telemetry data [23].
M. Yuan et al. proposed an LSTM-based network to implement fault classification and
remaining useful life estimation for an aero engine [24]. CNN is another essential deep
model that is widely exploited in fault diagnosis and yields excellent performance. L. Wen
et al. [25] developed a novel CNN network based on LeNet-5 to learn features from the
two-dimensional signals and then diagnose faults.

The aforementioned deep learning methods are usually difficult to train due to gradi-
ent vanishing or exploding. Residual networks with skip connections, which could skip
training from a few layers and transfer the original information directly to the output, are
able to alleviate these issues. T. Zhang et al. [26] developed a fault diagnosis model that
used STAC-tanh as an activated function to enhance the non-linear feature extraction ability
and residual networks. Zhang et al. [27] proposed a residual learning algorithm to improve
the information flow throughout the network and facilitate the network training.

In most engineering scenarios, the collected data contain many noises, and it is difficult
to extract the fault characteristics directly from the time domain. Some researchers have
revealed that useful features and representations will be more effortless to exploit and learn
in a higher space [28]. Consequently, it is important to adopt advanced signal processing
algorithms to transfer time domain data to frequency or time–frequency spectrum to learn
more fault information. Zhao et al. [29] developed an improved deep residual network with
dynamic wavelet packet coefficients to learn a set of features and promote the performance
of fault diagnosis for a planetary gearbox.

3. Basics and Background

Since our proposed method is based on a deep residual convolutional neural network
and short-time Fourier transform, the basic knowledge involved is briefly discussed first.

3.1. CNN and Deep Residual Networks

CNN, which has an excellent feature extraction capability and outstanding classifi-
cation performance, has been widely used in the field of aerospace fault diagnosis [30,31].
A typical CNN is displayed in Figure 2, which consists of an input layer, convolutional
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layers, pooling layers, fully connected (FC) layers and an output layer. The raw time
domain signals can be directly fed into the input layer, and the corresponding CNN is
one dimensional (1D-CNN), while some signal processing techniques could be conducted
to map the time domain data to various domains to improve and increase the diagnostic
accuracy of the CNN. The output layer using the softmax activation function indicates the
classification result of fault models.
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3.1.1. Convolutional Layer

The convolutional layer is critical because it extracts features of input data. Compared
to other deep models, CNN has two advantages: weight sharing and local connection,
which greatly reduce the size of parameters and speed up training. Multiple convolutional
kernels could be utilized in every convolutional layer to learn comprehensive features and
representations. The equation of the convolutional layer can be described as

xl = σ
(

W l ⊗ xl−1 + bl
)

(1)

where xl−1 and xl are the input and output, respectively. W l and bl represent the convolu-
tional kernels and bias term, respectively. ⊗ represents the convolutional operation, and σ
denotes the activation function.

3.1.2. Pooling Layer

The pooling layer is often adopted to obviate redundancy and enable the learned
feature to be more robust. The commonly used pooling layers contain max pooling and
average pooling. In this study, we use max pooling layers, which select the maximum value
of the pooled area. The mathematical operation of max pooling can be described as follows

yk
ij = max

(m,n∈Rij)
xk

mn (2)

where yk
ij is the output values, while xk

mn denotes the value at the pooling area Rij around
position (m, n).

3.1.3. Batch Normalization (BN)

In order to accelerate the training procedure and avoid overfitting, several optimiza-
tion strategies such as batch normalization (BN) [32] and Dropout are adopted. BN is a
normalizing algorithm and can alleviate internal covariance shift. The mathematical model
of BN is described as follows

µ =
1

Nbatch
∑Nbatch

i=1 xi (3)

σ2 =
1

Nbatch
∑Nbatch

i=1 (xi − µ)2 (4)

x̂i =
xi − µ√
σ2 + ε

(5)
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yi = γx̂i + β (6)

where xi denotes the input value, while x̂i represents the result of the normalizing procedure,
Nbatch denotes the length of small batches of data, and µ and σ2 denote the mean and variance
of the input batch data, respectively. ε is a constant that is positive and very close to 0. yi
denotes the output of the BN layer, and γ and β are the parameters that can be learned.

3.1.4. Residual Network

As the number of neural network layers increasingly grows to deepen, it becomes
more and more difficult to train the CNN model. To address this problem, an improved
model, called a residual network (Resnet), was proposed by K. He et al. [33]. Resnet adds a
shortcut connection to the typical structure of the CNN, which could avoid the reduction
in information. The shortcut connection structure is described in Figure 3, where x denotes
the input and H(x) denotes the output; therefore, the Resnet aims to learn the difference
between x and H(x), i.e., F(x) = H(x) − x. In this way, Resnet can facilitate the back
propagation of errors and optimize the model’s parameters.
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In the Resnet, the higher-level layer will obtain more information from the lower-level
layers by using shortcut connections. In our fault diagnosis model, the Resnet is one of
the most important modules. The Resnet usually contains several convolutional layers,
BN layers and activated layers and then adds to the shortcut connection path to form a
complete basic residual block.

3.2. Short-Time Fourier Transform

It is hard to extract fault features directly from the telemetry signals of an IMU due to
the impact of noise. A solution is to transfer the data from the time domain to a frequency or
time–frequency domain. The short-time Fourier transform (STFT) is a well-known method
for time–frequency analysis. It is used to generate representations that capture both the
local time and frequency features in the telemetry signals. The STFT uses the fixed-sized
time-shifted window function h(τ − t), which has a user-defined time duration to obtain a
transformation of the signal i(t) in the time domain. In other words, the STFT is generated
by taking the Fourier transform of small durations of the original signal. In the continuous
domain, STFT can be expressed as

STFT{i(t)} = X(τ, ω) =
∫ +∞

−∞
i(t)h(t− τ)e−jωtdt (7)
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while in the discrete domain, STFT can be described as

X(n, ω) = ∑+∞
m=−∞ i(m)h(m− n)e−jωm (8)

where h(n) is the analysis window, which is assumed to be non-zero only between 0 and
N − 1.

X(n, k) = X(n, ω)
∣∣∣ω= 2π

N k = ∑+∞
m=−∞ i(m)h(m− n)e−j 2π

N km (9)

In this work, the Hanning window function is adopted, and the length of the window
is set to 64.

4. Proposed Method

In this section, we detail the proposed deep model with novel data preprocessing
method to resolve the issues of fault diagnosis in IMU with a large volume of telemetry
data. The framework is shown in Figure 4.
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4.1. The Novel Data Acquisition and Preprocessing

In this study, the raw telemetry data are measured by inertial sensors in IMU and then
transmitted to the ground center through microwaves. To promote the diagnosis accuracy,
it is significant to preprocess the telemetry data before feeding them into the subsequent
residual network. The novel preprocessing strategies proposed in this work include STFT,
normalization and data augmentation.

4.1.1. Time–Frequency Transformation through STFT

The raw data are one-dimensional time sequences. We separate the time sequence into
small slices with the length of 1024. Each slice denotes a sample. There are not overlaps
between two slices. If the length of each original signal is L, then it can be divided into
N samples, where N = floor(L/1024). We stochastically choose 80% of the entire slices
as the training set, while the rest of slices form the test dataset. Figure 5 shows the data
split method. Although the CNN can automatically extract features directly from the time
domain of data, it is useful and effective to obtain the time–frequency spectrum with some
more discriminative information than that in time domain [32]. Firstly, we adopt short-time
Fourier transform (STFT) [34] to process the raw telemetry data in our method. The fault
features are much easier to be distinguished than those in the time domain. The powerful
characteristics of STFT promise to bring more discriminative features, which makes it easier
for the subsequent residual network to classify fault categories.
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4.1.2. Normalization

Generally speaking, the scales of different telemetry data in different channels vary
widely due to different origins and characteristics. Normalization scales the data to be
analyzed to a specific range such as [0.0, 1.0] or [−1, 1] to provide better results. It
can enhance the following data processing and speed up the training of deep networks.
The Z-score normalization is used to process the data because it can achieve better fault
diagnosis than other normalization methods, e.g., Min–Max normalization and whitening
normalization [17]. The Z-score normalization is shown as follows

x̂i =
xi − µ

σ
(10)

where µ represents the average value and σ represents the standard deviation of the training
dataset. xi denotes the input data and x̂i denotes the normalization result.

4.1.3. Date Augmentation

Deep neural networks usually need a lot of training samples to obtain ideal perfor-
mance. However, the training samples, especially the faulty samples, are hard to obtain,
and the training datasets are generally small. Data augmentation techniques can be utilized
to extend the diversity and increase volume of training sets, improving the robustness of
deep networks and avoiding overfitting.

As the original 1-D telemetry data have been transferred to 2-D time–frequency
spectrum figures, data augmentation methods such as random scale and random crop for
2-D input data are finally applied to our method.

The random scale method multiplies the input data x with a value γ following the
Gaussian distribution of N (1, 0.01). The equation of random scale is shown as follows

..
x = γ ∗ x (11)
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In the random crop, a binary sequence s, whose subsequence of random position is zero,
covers partial input data x. The formulation of random crop can be described as follows

..
x = s ∗ x (12)

4.2. Model Training
4.2.1. Improved Version of Activation Function

In the deep learning-based fault diagnosis model, the deep networks are usually
used to extract discriminative representations, which has a significant influence on the
performance of fault diagnosis. Moreover, the feature extraction and non-linear expression
capabilities are mainly implemented by activation functions of each layer. According to
different neural networks, various activation functions have been proposed and applied,
among which Rectified Linear Unit (ReLU) [35] is one of the widely-adopted activation
functions and has attracted widespread attention in deep models.

In essence, the ReLU returns 0 when the input is negative, while returns back to the same
positive value if the input is non-negative. The mathematical function of ReLU is as follows

ReLU(x) =
{

0 for x < 0
x for x ≥ 0

(13)

Although ReLU can accelerate the convergence procedure and alleviate the vanishing
gradient problem, the problem of “dead neurons” occurs when the neuron becomes stuck
in the negative side and constantly outputs zero. Some improved versions have been
developed to improve the performance of ReLU.

The Parameter ReLU (PReLU) introduces a set of learnable parameters γi, which are
different corresponding to different neurons of layers. A PReLU [36] is shown as follows

PReLU(x) =
{

γix for x < 0
x for x ≥ 0

(14)

The γi could be learned using gradient backpropagation, and the non-linear ability of
PReLU is highly flexible. PReLU not only allows different neurons to have different parameters,
but also allows a group of neurons to share one parameter. Compared with ReLU activation
function, the features learned by the PReLU are more discriminative and effective.

4.2.2. The Structure of Our Proposed Residual Network

Unlike the traditional CNN, residual networks first proposed by K. He et al. in
2016 [33] utilized a shortcut connection to allow lower-level features to be transferred to a
higher-level layer directly.

Firstly, a basic residual block containing 2 convolutional layers (Conv), 2 batch normal-
ization (BN) layers, 2 PReLU layers and a skip connection is constructed, which is shown
in Figure 6. This basic residual block can not only promote the feature learning efficiency,
but can also facilitate the extension of CNN and adjust the depth of network corresponding
to the practical demand.
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Then, the proposed residual network, which is responsible for extracting and learning
discriminative features in the time–frequency spectrum, mainly contains convolutional
layers, several basic residual blocks, maximum pooling layers, adaptive maximum pooling
layer and fully connected layers, etc. The overall structure is shown in Figure 7. The wide
convolutional layer adopts wide kernels to learn representations and further suppress the
interference of noise [37]. The basic residual blocks are stacked to learn features, and the
maximum pooling layers can reduce the parameters of the entire network. Finally, the
learned high-level representations of input data are fed into the fully connected layers,
which are mapped into different fault classes.
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4.3. The Flow Chart of the Proposed Method

The flow chart of proposed model is shown in Figure 8, and the general procedure
contains three steps: data acquisition and preprocessing, model training and model test.

(1) The telemetry data of IMU in spacecraft are obtained and divided into training
dataset and test dataset without any overlap. The time–frequency spectrums are firstly
obtained via STFT. Then, Z-score normalization is utilized to unify the data and the data
augmentation tricks are adopted to make the dataset more diverse.

(2) The training dataset is fed into network to train the proposed model. The train-
ing process includes calculating the loss function, updating model parameters through
Adam [38]. Once the model is well trained, the architecture and parameters are saved.

(3) The data preprocessing algorithm can be applied to the test dataset, and then test
dataset are input to the trained model. Finally, the diagnosis results are obtained through
the proposed model.
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5. Experiments and Analysis

The proposed fault diagnosis algorithm is a data-driven method that diagnoses and
analyzes the telemetry data sampled from the IMU. Aiming to validate the effectiveness
and outstanding performance of the proposed model, we implemented experiments on
public datasets similarly to many other literatures. The proposed deep learning model was
implemented by using Pytorch with NVIDIA RTX 2080Ti GPU.

5.1. Case 1
5.1.1. Data Description and Preprocessing

Our proposed method was firstly conducted on the famous public dataset in the
field of fault diagnosis provided by the Southeast University [39], which contains two
sub-datasets, including the gear dataset and bearing dataset. This dataset is called the SEU
dataset for short, and it is sampled from the Drivetrain Dynamics Simulator (DDS). As
shown in Figure 9, the DDS consists of a motor, parallel gearbox and planetary gearbox.
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According to the different rotating and speed configurations, there are two working
conditions, which are 20 Hz–0 V and 30 Hz–2 V. There are five kinds of fault models for
each kind of data, so the total number of types is 20 corresponding to different datasets.
The dataset is shown in Table 1. In each file, there are eight rows of signals, and we use each
row as a sub-dataset except the first row; therefore, there are seven sub-datasets denoted as
SEU_A to SEU_G, respectively, in our experiment.

Table 1. The details of SEU.

Label Dataset Fault Type Working
Condition Label Dataset Fault Type Working

Condition

0 Bearing Ball 20 Hz–0 V 10 Gear Chipped 20 Hz–0 V
1 Bearing Combination 20 Hz–0 V 11 Gear Health 20 Hz–0 V
2 Bearing Health 20 Hz–0 V 12 Gear Miss 20 Hz–0 V
3 Bearing Inner 20 Hz–0 V 13 Gear Root 20 Hz–0 V
4 Bearing Outer 20 Hz–0 V 14 Gear Surface 20 Hz–0 V
5 Bearing Ball 30 Hz–2 V 15 Gear Chipped 30 Hz–2 V
6 Bearing Combination 30 Hz–2 V 16 Gear Health 30 Hz–2 V
7 Bearing Health 30 Hz–2 V 17 Gear Miss 30 Hz–2 V
8 Bearing Inner 30 Hz–2 V 18 Gear Root 30 Hz–2 V
9 Bearing Outer 30 Hz–2 V 19 Gear Surface 30 Hz–2 V

The raw data are divided into small pieces without any overlapping. Every slice has
1024 values and denotes a sample. Then each sample xi enters to the input of STFT. The
Hanning window is selected, and the length of window is set to 64; therefore, after STFT, a
33× 33 2-D spectrum image is generated for each sample. In order to make the subsequent
residual network extract useful and discriminative features, the 33× 33 spectrum images
are adjusted to 330× 330 by using resample.

5.1.2. Model Parameter Setting

The proposed model contains several trainable parameters including the values of
convolutional kernels and bias, and many hyperparameters such as the number of convo-
lutional layers, the number of basic residual blocks, the number of fully connected layers,
etc. Appropriately setting the trainable parameters and hyperparameters greatly promotes
the diagnosis performance of the deep model. The trainable parameters can be learned
by optimizing loss functions, while it is difficult to effectively set the hyperparameters. In
practical application scenarios, a feasible way to determine the final hyperparameters and
their ranges is referring to expert experience and multiple experiments.

Considering the volume of the dataset, we use one wide convolutional layer, three
basic residual blocks and three fully connected layers to construct the backbone of our
model. The number of neurons in the output fully connected layer is equal to the numbers of
fault types. The structure of the proposed method is shown in Figure 7 and the parameters
are detailed in Table 2.

Table 2. Hyperparameters of the proposed method.

No. Layer Output Channels Kernel Size Stride Padding Activation Function

1 Conv2d 1 16 13×13 1 Yes PReLU
2 Maxpool 1 / 2×2 2 No /
3 Basic residual block 1 64 3×3 1 Yes PReLU
4 Basic residual block 2 128 3×3 1 Yes PReLU
5 Basic residual block 3 256 3×3 1 Yes PReLU
10 AdaptiveMaxpool / / / No /
11 FC 1 / / / / PReLU
12 Output layer / / / / Softmax
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The Adam optimizer is used and the size of the mini-batch is 32. The learning rates
are 0.001. To avoid overfitting, the dropout trick is applied in the fully connected layers,
and the dropout rate is 0.5. To avoid randomness, every experiment is repeated six times,
and the average of classification accuracies is taken as the final results.

5.1.3. Comparison Methods

To prove and validate the effectiveness and outstanding performance of the proposed
fault diagnosis methods over other methods, we used several state-of-the-art approaches
to compare the experiment results, including AE [40], DAE [41], CNN [25], AlexNet [42]
and LSTM [22]. All the networks’ architectures of the comparison methods are shown in
Table 3.

Table 3. The architecture of comparison methods.

AE DAE CNN AlexNet LSTM Proposed Method

Input
5 Conv

2 FC
2 FC

5 ConvT

Conv

Input
5 Conv

2 FC
2 FC

5 ConvT

Conv

Input
2 Conv

1 Maxpool
3 Conv

1 Maxpool
3 FC

Input
1 Conv

1 Maxpool
1 Conv

1 Maxpool
3 Conv

1 Maxpool
3 FC

Input
3 LSTM

3 FC

Input
1 Conv

1 Maxpool
3 basic residual

blocks
1 Maxpool

3 FC

Autoencoder (AE), which contains an encoder and a decoder, is an unsupervised
deep learning method for feature extraction. The encoder is used to extract hidden rep-
resentations of input data, while the decoder attempts to reconstruct the original input
data from the hidden representations learned by the encoder. In this study, the encoder of
AE contained five convolutional layers with BN and two fully connected layers, and the
relevant decoder contained two fully connected layers and five transposed convolutional
layers. A denoising autoencoder, which is a derivative of the AE, has the same network
structure with the AE in this study.

The CNN used was constructed with two continuous convolutional layers followed
by a max pool layer, and then three continuous convolutional layers followed by a max
pool layer. There were three fully connected layers at the end of the model. AlexNet was
proposed by Krizhevsky A. in 2012, and it is a derivative of CNN, which contains five
convolutional layers, three max pool layers and three fully connected layers.

The LSTM network is a variant of RNN that adopts modified units instead of standard
units. It has a powerful feature extraction ability in time series and has become popular
in fault diagnosis to extract fault representations. The LSTM model used in this paper
contained three LSTM layer and three fully connected layers.

In addition, all baseline methods used two-dimensional (2-D) time–frequency images
as input, which were processed by using the method detailed in Section 4.2, and each
convolutional layer was followed by a BN layer to speed up the convergence of the network.
Moreover, to guarantee the fairness of comparison, the comparison methods attempted to
use the same hyperparameters adopted by the proposed method. In addition to that, the
softmax activation function was adopted in the last layer, while the rest of the layers used
PReLU as an activation function if necessary.

5.1.4. Results’ Analysis

To quantitatively measure the performance of various approaches, classification accu-
racy, defined as below, was used.

Accuracy =
|x : x ∈ Dtest ∧ ŷtest = ytest|

|x : x ∈ Dtest|
(15)
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where Dtest represents the test dataset, ytest is the true label and ŷtest is the predicted label.
The experiments were conducted six times for each algorithm, and the mean accuracy

was calculated. The classification accuracies in the SEU datasets are presented in Table 4.
Some conclusions can be drawn as follows:

Table 4. Accuracy (%) of different algorithms for SEU dataset.

Dataset AE DAE CNN AlexNet LSTM Proposed Method

SEU_A 95.34 96.81 83.33 94.36 90.69 98.77
SEU_B 84.56 93.63 61.02 87.99 79.17 96.81
SEU_C 97.30 95.83 84.80 88.48 89.95 99.02
SEU_D 93.38 94.12 89.95 85.05 81.86 98.04
SEU_E 89.46 94.85 69.36 89.71 83.58 99.51
SEU_F 73.53 81.13 63.24 84.80 79.17 94.12
SEU_G 68.38 89.71 61.03 82.11 74.75 93.87
Average 85.99 92.29 73.24 87.50 82.74 97.16

(1) The proposed approach achieved the best performance across all the datasets.
(2) In all seven datasets, the accuracies of the proposed approach were larger than 93%,

and the average accuracy was 97.16%, which was 11.17%, 4.87%, 23.92%, 9.66% and 14.42%
higher than the AE, DAE, CNN, AlexNet and LSTM, respectively. It also indicates that our
proposed method can diagnose the fault types of SEU datasets well.

(3) The average accuracy of the DAE (92.29%) was superior to the AE (85.99%) due to
the fact that the DAE takes an input mixed with noise and is trained to reconstruct the pure
type of the input.

(4) LSTM achieved an overall average accuracy of 82.74%, yielding 9.5% improvements
compared to the CNN, which shows that LSTM can extract more discriminative features
than CNN.

The histogram of diagnosis accuracy for various methods in the seven SEU datasets is
shown in Figure 10.
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Figure 10. Histogram of diagnosis accuracies for different algorithms.

5.1.5. Visualization Analysis

In order to comprehend the predominant performance of the proposed approach more
intuitively, the confusion matrix and t-distributed Stochastic Neighbor Embedding (t-SNE)
technologies were utilized to visualize the results. The confusion matrixes of the diagnosis
results in the SEU_B dataset are detailed in Figure 11.
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Figure 11 shows the confusion matrixes of the diagnostic results in the SEU_B dataset
for AE, DAE, CNN, AlexNet, LSTM and our proposed method, respectively. From Figure 11,
we can conclude that the proposed approach correctly classified 14 fault types except for
fault labels 2, 7, 10, 15, 17 and 19. In fault type 15, the proposed method misclassified six
samples. Combined with the results exhibited in Table 4, the proposed model outperformed
other baseline methods in classifying fault types for the SEU dataset.

In order to understand and visualize the features learned by the models, t-SNE technol-
ogy, which can compress the high-dimensional features into two-dimensional space, was
adopted to visualize the features from the output layer of the model. Taking the diagnosis
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task for the SEU_B dataset, for example, Figure 12 shows the learning by AE, DAE, CNN,
AlexNet, LSTM and our proposed method, respectively. The different colors in Figure 12
represent the different fault types of samples, and the coordinate value of every point
denotes the location of the according point in the two-dimensional domain.
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As shown in Figure 12, among all the baseline methods, the CNN shown in Figure 12c
exhibits the worst cluster performance, with a large number of points of different fault
models overlapping, while points that have the same fault types are not gathered together.
The results of the AE shown in Figure 12a and the DAE shown in Figure 12b indicate that
they perform better than CNN and LSTM, shown in Figure 12c,e, respectively. However,
in Figure 12f, our proposed method separates nearly all 20 fault types, and only a few
overlaps can be observed. Moreover, the distance between any two clusters is relatively far
away, which indicates that the proposed approach has a better ability to identify the fault
types and, consequently, has a much higher classification accuracy.

5.2. Case 2
5.2.1. Data Description

Another dataset provided by the University of Connecticut (UoC) [43] was also used.
The UoC dataset contains nine fault models, including root crack, spalling, missing tooth,
five chipping tips with different levels of severity and a normal condition.

5.2.2. Results’ Analysis

The baseline methods were still AE, DAE, CNN, AlexNet and LSTM. The network
architectures and parameter setting were similar to Case 1.

The accuracies are presented in Table 5. The accuracy of the proposed algorithm
was 77.02%, which was 27.25% higher than the second-performing method, i.e., DAE,
indicating that the proposed approach can not only extract discriminative features but can
also classify the fault types well. To compare the performance of the ReLU and PReLU
activation functions, an ablation study was conducted, and the results are shown in the
last two columns of Table 5. It indicates that using the PReLU activation function in the
proposed model can obtain a higher diagnostic accuracy (77.02%) than using the ReLU
activation function (75.17%).

Table 5. Accuracy (%) for methods in UoC dataset.

Dataset AE DAE CNN AlexNet LSTM
Proposed
Method
(ReLU)

Proposed
Method
(ReLU)

UoC 47.34 49.77 32.72 37.14 34.55 75.17 77.02

5.2.3. Visualization Analysis

The features learned from the output layer of the UoC datasets are shown in Figure 13.
The AE, DAE and our proposed method could separate the features well, but the CNN,
AlexNet and LSTM could not separate the points of different types. In Figure 13c–e, a large
number of fault models overlap and mix together, making it extremely hard to classify
them, while in Figure 13f, different fault models are well separated and far away from
each other. Moreover, points of the same fault type are concentrated together. Hence, the
proposed method can separate the features better than other baseline approaches and has a
higher accuracy.
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6. Conclusions

In order to learn discriminative fault characteristics and representations and promote
the diagnosis performance of IMU in spacecraft, this study proposes a novel data prepro-
cessing algorithm and a diagnosis network based on deep learning. Firstly, a novel data
preprocessing method for the telemetry data is proposed. This method uses STFT to acquire
time–frequency spectrum images of input samples, and the Z-score normalization and data
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augmentation techniques are also exploited to facilitate the training of the subsequent deep
model and avoid a gradient vanishing problem. Then, a basic residual block with a shortcut
connection is proposed and several of these blocks are stacked to construct a deep fault di-
agnosis model. Finally, to enhance the non-linear feature extraction ability of the proposed
model, the activation function is improved by using PReLU instead of the traditional ReLU.
Experimental results indicate that the proposed model has good fault features’ extraction
ability and exceeds other state-of-the-art models in terms of classification accuracy.

At present, our work is based on the assumption that the training and test data should
follow the identical distribution. Unfortunately, this hypothesis does not always hold
in most application scenarios. For example, in the area of machines’ fault diagnosis, the
training dataset and test dataset are often collected in different working conditions, which
results in a shift in data distribution. Therefore, transfer learning (TL)-based fault diagnosis
approaches will be our research emphases in the future.
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