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utonomous vehicle technology is rapidly advanc-
ing (see “Summary”). A key enabling factor is 
the advancing capabilities and declining cost of 
computing and sensing systems that enable 
sensor fusion for awareness of the vehicle’s 

state and surroundings (see “Nontechnical Article Sum-
mary”). For control purposes, the vehicle’s state must be 
estimated accurately, reliably, at a sufficiently high sample 
rate, and with a sufficiently high bandwidth. For systems 
with a high bandwidth, these requirements are often 
achieved by an aided inertial navigation system (INS) (see 
“Aided Inertial Navigation System History”) [1], [2], [3], [4], 
[5], [6]. An INS integrates data from an inertial measurement 
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unit (IMU) through a kinematic model at the high sam-
pling rate of the IMU to compute the state estimate. An 
aided INS corrects this state estimate using data from 
aiding sensors [for example, vision, lidar, radar, and global 
navigation satellite systems (GNSS)]. State estimation by 
sensor fusion may be accomplished using a variety of 
methods: Kalman filter (KF) [7], [8], [9], [10], [11], extended 
KF (EKF) [12], [13], [14], [15], unscented KF (UKF) [16], [17], 
[18], particle filter (PF) [19], [20], [21], and maximum a poste-
riori (MAP) optimization [22], [23], [24], [25], [26], [27].

A data fusion system that combines the IMU and aiding 
sensor data will be able to achieve improved performance by 
real-time calibration if it incorporates an IMU error model in 
state-space form. The IMU manufacturer supplies a data 
sheet, characterizing the expected IMU performance. In 
accordance with the specification standards [28], [29], [30], 
this performance is typically stated in terms of the Allan 
variance (AV). However, it is not immediately clear how to 
translate the AV information from such data sheets into a 
suitable state-space model. Such translation methods have 
been known and used for several decades [31], [32], [33], [34], 
[35], [36], [37], [38], [39], [40]. Despite their importance, a clear 
tutorial exposition of the underlying ideas, issues, and trad-
eoffs is not available in the existing literature. Providing 
such a tutorial discussion is the purpose of this article. The 
long history of these ideas and issues relative to successful 
applications is discussed in the “Aided INS History.”

APPLICATION CONTEXT
The INS design is based on the vehicle kinematic model

 ( ) ( ( ), ( ))x t f x t u tv v=vo v v  (1)

where xvv  represents the state of the vehicle and u 60!v  rep-
resents the system inputs (that is, specific force and angu-
lar rate vectors). A typical vehicle’s state vector might 

Summary
utonomous vehicle technology is advancing rapidly. Its con-

trol capabilities often rely on high-bandwidth state estima-

tion incorporating inertial measurements. High-performance 

state estimation incorporates inertial measurement error mod-

els through the process of state augmentation to enable on-

the-fly instrument calibration.

This article is a tutorial describing the process and issues 

related to developing a state-space model for the stochastic 

errors affecting an inertial measurement unit (IMU). The start-

ing point is the instrument error characterization data sheet 

provided by the manufacturer, which is typically either an Al-

lan standard deviation graph or the Allan variance (AV) pa-

rameters extracted from that graph. The desired output of the 

modeling process is a linear discrete-time state-space model 

of the IMU stochastic errors suitable for augmentation to the 

inertial navigation system error state model.

Along with this tutorial, supplementary open source soft-

ware is available. One software component does the following: 

1) Given a continuous-time state-space IMU stochastic error 

model selected by the designer to match the AV, the software 

computes a discrete-time equivalent state-space model. 2) 

Given that discrete-time model, it produces a stochastic error 

sequence suitable for AV computations. 3) Given a sequence 

of stochastic errors, it computes and plots the AV. Given AV 

data and a specific continuous-time state-space IMU stochas-

tic error model structure, a second software component imple-

ments an optimization-based approach to select the model 

parameters that match the AV data.

Nontechnical Article Summary
utonomous vehicles utilize control systems to cause 

the vehicle’s state to follow a desired trajectory. The 

control system incorporates information about the vehi-

cle’ position, velocity, acceleration, attitude, and angular 

rate, which can be computed by integration of the mea-

surements of an inertial measurement unit (IMU). This 

integrative process also accumulates IMU measurement 

errors that cause the integrated IMU measurement (which 

is the vehicle’s state estimate) to slowly diverge from the 

true vehicle’s state. The difference is referred to as the 

vehicle error state vector. This vehicle error state vector 

and various IMU calibration parameters can be estimated 

through the state estimation process using information 

from external sensors [for example, camera, global navi-

gation satellite systems, lidar, and radar]. Such real-time 

calibration of the IMU (and other sensors) results in im-

proved accuracy and slower rates of IMU error accumula-

tion during the time intervals between the measurements 

from external sensors.

Design of the state estimator requires definition of the 

IMU error state vector and its stochastic discrete-time 

state-space model. This modeling process begins with the 

IMU performance specification information provided by 

the IMU manufacturer, which (per the IEEE standards) is 

communicated through the Allan variance. Information ex-

tracted from the Allan standard deviation graph allows the 

analyst to evaluate various issues and tradeoffs involved in 

selecting the continuous-time IMU error state-space mod-

el. This tutorial article discusses this approach, issues and 

tradeoffs, translation of the continuous-time model to an 

equivalent discrete-time model for implementation, and a 

verification approach. Example Matlab scripts are supplied, 

which implement each step of this process.
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Aided Inertial Navigation System History

The first use of inertial navigation dates back to the German 

V-2 missile in 1942. After World War II, the United States 

started to develop inertial navigation systems (INS) for bal-

listic missiles, and (later in the 1960s) for the Apollo missions 

as well as for military and commercial airplanes [S1]. The ear-

ly inertial navigation systems used a gimballed platform that 

decoupled the host vehicle’s attitude changes from those of 

the platform. This decoupling allowed three accelerometers 

mounted on the platform to maintain alignment with the north, 

east, and down directions. For many applications, a reduced 

set of sensors was sufficient, for example, the vertical axis 

and respective sensors were omitted. Because the ini-

tial position and velocity were known, integration of the accel-

erometer measurements propagated the position and velocity 

vectors forward in time. Gyroscopes were used to measure 

small perturbations of the platform attitude, which were then 

compensated for mechanically to maintain the alignment of 

the accelerometers with the north, east, and down directions.

These gimballed systems, despite their impressive accu-

racy, had several drawbacks. The mechanical construction 

was complex, bulky, and expensive. Furthermore, aerobatic 

maneuvers could cause a gimbal lock: when two gimbal axes 

become aligned, a rotation perpendicular to this axis causes 

the platform to lose alignment. A solution was to add a fourth 

gimbal, which further increased complexity and cost [S2].

Advances in electronic and gyroscope technology in the 

1960s enabled the development of strapdown INS. In a strap-

down INS, an inertial measurement unit (IMU) consisting of 

three accelerometers and three gyroscopes is attached rig-

idly to the host vehicle. The gyroscopes measure the attitude 

changes of the host vehicle, thereby enabling computational 

tracking of its attitude. This requires that these gyroscopes 

be capable of accurately measuring angular rates of up to 

several hundred degrees per second for highly agile host 

platforms, whereas for a gimballed system, a gyroscope 

measurement range of few degrees per hour would have 

been sufficient. Knowledge of the host vehicle’s attitude al-

lows transformation of the accelerometer measurements of 

the specific force from the body frame to an Earth reference 

frame (for example, a north-east-down fixed tangent frame) 

in which compensation of gravity is straightforward, thereby 

yielding measurements of the host vehicle’s acceleration. As 

in a gimballed system, this host vehicle’s acceleration is then 

integrated twice to compute the changing host vehicle’s posi-

tion and velocity over time.

For any INS (gimballed or strapdown), the errors in the  

inertial measurements accumulate, and together with the 

inaccuracies of the host vehicle’s initial state estimate, cause 

a deterioration of the accuracy of the navigation solution with 

time. To counter this temporal growth of position, velocity, and 

attitude errors, the inertial navigation system can be corrected 

using aiding measurements from external sensors [for ex-

ample, a global navigation satellite systems (GNSS) receiver, 

camera, lidar, and radar].

A typical GNSS-aided INS architecture is shown in 

Figure S1. The strapdown algorithm numerically integrates 

the nonlinear kinematic model described in (2) using the cali-

brated IMU measurements ( )u tvt  as inputs. This integration is 

at the sampling rate of the IMU (for example, hundreds or 

thousands of times per second), which is designed to be high 

relative to the bandwidth of both the IMU and the host vehicle. 

When aiding sensor measurements are available, the naviga-

tion filter, often an extended or linearized Kalman filter (KF), 

estimates corrections for the state and calibration factors. 

Aiding measurements are typically available at low rates (for 

example, one vector measurement per second), relative to 

the host vehicle’s bandwidth. Calibration factors may include 

deterministic errors (for example, scale factor and sensor-axis 

alignment errors) and time-correlated stochastic errors. This 

on-the-fly estimation of IMU calibration factors continuously 

recalibrates the INS, leading to a superior INS performance 

during time intervals when aiding sensor measurements are 

not available (for example, GNSS outages).

Two aided INS system architectures are widely used: loose 

and tight coupling (see [S3, Ch. 28]). In a loosely coupled 

GNSS-aided approach, the GNSS’ receiver computes posi-

tion and velocity estimates internally from its pseudorange 

and Doppler measurements without using INS information. 

This GNSS computation can occur only when the receiver has 

at least four satellites in view. When the GNSS’ position and 

velocity measurements are output from the receiver, the re-

sidual between them and their INS computed values are used 

to drive the navigation filter to estimate the INS’s error state; 

otherwise, the INS continues to integrate without correction. 

In a tightly coupled approach, the residual of the navigation 

filter is formed between the GNSS pseudorange and Doppler 

measurements and the predictions of those quantities as com-

puted by the INS. This allows aiding even when fewer than four 

satellites are in view. The main tradeoff is that tightly coupled 

FIGURE S1 The generic block diagram of a global navigation 
satellite systems-aided inertial navigation system.
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systems offer the potential for higher performance, especially 

when fewer measurements are available, but are more com-

plex to implement due to the need for the navigation system: 

to process GNSS ephemeris data, calculate satellite positions 

and velocities, and apply corrections for ionosphere, tropo-

sphere, satellite clocks, and broadcast group delays (see [S3, 

Sec. 28.2]). Similar tradeoffs apply for aiding with alternative 

aiding sensors.

There is rich literature concerning dynamics, control, and 

system-theoretic contributions within the inertial navigation 

context [1], [S4]. Throughout its history, the KF has played an 

important role [7], [8], [S5]. This history has included a focused 

effort on numerical methods [S6], [S7], [S8], [S9]. Observ-

ability studies for both stationary and time-varying systems 

is critical both for initialization and on-the-fly calibration [31], 

[S10], [S11], [S12], [S13], [S14], [S15], [S16], [S17], [S18], [S19], 

[S20]. Also, understanding the controllability of the state from 

the perspective of the driving noise was critical to removing 

issues of KF divergence [S21]. More recently (but still with a 

long history [S22], [S23], [S24]), efficient numeric methods for 

real-time trajectory (as opposed to state) estimation (that is, 

real-time smoothing) are important for inertial-based, simulta-

neous location and mapping applications [23], [24], [25], [26].

The ongoing decreases in the cost of inertial sensors, aid-

ing measurements, and computation are allowing aided strap-

down INS to be feasible with respect to both cost and accuracy 

in commercial applications. For example, the interest in com-

bining GNSS-aided INS with real-time kinematic techniques 

(see [S3, Ch. 26]) capable of achieving submeter accuracy 

is growing. An overview on possible architectures is given in 

[S25]. The performance of aided inertial systems is dependent 

on the navigation filter incorporating a state-space model of 

the IMU stochastic errors. This article provides a tutorial de-

scribing the industry-standard process and tradeoffs related to 

defining such models.
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include subvectors for position, velocity, and attitude. The 
navigation system numerically solves (1) based on a mea-
surement of the signal ( ),u tv

 ( ) ( ( ), ( ))x t f x t u tv v=vto vt vt  (2)

where ( )u tvt  is computed from the IMU measurement ( )u tvu  
using calibration factors that are estimated in real time. A 

simplified 2D inertial navigation example illustrating these 
ideas is presented in “Simplified Inertial Navigation 
System Example.”

For a scalar signal, the model relating the sensor mea-
surement ( )u tu  to the desired signal u(t) is (see [28, Annex B] 
and [29, Annex B])

 ( ) ( ) ( ( )) ( ) .u t u t d u t z t= + +u v  (3)

Simplified Inertial Navigation System Example

This section presents a simplified 2D inertial navigation sys-

tem (INS) example. The purpose is to present a nonlinear 

kinematic model, INS equations that would propagate the ve-

hicle’s state through time, the linearized model that predicts 

the growth in the INS error over time, how that error model is 

used to propagate the error covariance through time, and state 

augmentation for sensor calibration.

Various reference frames and variables are illustrated in 

Figure S2. Earth is assumed to be circular with radius R, non-

rotating, and with uniform density. The point P represents the 

location of the inertial measurement unit (IMU) on the vehicle. 

The vehicle is free to translate in 20  and rotate with one de-

gree of freedom, denoted by i. The IMU sensitive axes are in 

the directions indicated by the unit vectors uv  and ,wv  which de-

fine the vehicle’s reference frame. The origin of the geographic 

reference frame is defined as the projection of the point P onto 

the Earth’s surface along the vector to the Earth’s center. The 

instantaneous Earth tangent plane at the origin of the geo-

graphic frame defines the unit vectors nv  and .dv  The height 

of the point P above the tangent plane is the altitude h. The 

latitude z  and pitch i are defined as positive in the directions 

indicated in the figure. The vectors zv  and pv  define the axes of 

the Earth-centered reference frame.

The kinematic model for the IMU at point P (that is, the ve-

hicle model) is
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where aiv
gv  is the inertially referenced vehicle acceleration vec-

tor represented in the geographic frame, and ~gv is the rotation 

rate of the vehicle relative to the geographic frame. This angular 

rate is computed as gv iv ig~ ~ ~= -  where ~iv is the rotation rate 

of the vehicle with respect to an inertial frame (which is mea-

sured by the gyro), and v R hig n~ z=- =- +o  is the transport 

rate of the geographic frame with respect to the inertial frame. 

The superscript g (or v) on the vector quantities indicates that 

the vector is represented in geographic (or vehicle) frame. The 

vector [ , ]v vn d
<  is the Earth-relative velocity of point P, repre-

sented in the instantaneous tangent plane. The second term on 

the right side of (S2) is due to the rotation rate of the geographic 

frame with respect to the Earth-centered inertial frame (that is, 

transport rate). Equations (S1)–(S3) are an example of the non-

linear kinematic model of (1) in the main portion of this article.

For INS computations, the acceleration vector and angular 

rate are computed from the IMU measurements. The IMU con-

sists of a dual-axis accelerometer and a single-axis gyro with 

output measurements modeled as

 ( )u a g fv
iv
v v v v v

1 1 1f f= - - = -vu v v v v v  (S4)

 u iv2 2~ f= -u  (S5)

where the tilde indicates a measurement, f a giv= -v v v  is the spe-

cific force vector, and gv  represents the gravity vector. The terms

( ) ( )d u z d u zandv v v
1 1 1 2 2 2f f=- - =- -v v v

represent the sum of the deterministic and stochastic acceler-

ometer and gyro errors, as defined in (3).

The IMU provides the measurements in v-frame, but they 

are needed for computations in g-frame. Vectors are trans-

formed between frames using a direction cosine matrix (for 

example, ,f R fg
v
g v=v v  where f gv  is the specific force vector rep-

resented in geographic frame). The rotation matrix Rv
g  from 

platform to geographic frame is defined as

FIGURE S2 The variables for a 2D simplified inertial navigation 
system example.
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The measurement ( )u tu  of the desired signal u(t) is cor-
rupted by deterministic errors ( ( ))d u tv  and a cumulative 
stochastic error z(t). Deterministic errors are the sensor 
imperfections for which an analytical model with unknown 
deterministic coefficients is sufficient. Some of these 
coefficients exhibit only minor variations during the 
lifetime of the instrument. These can be estimated and 
compensated for in a factory-calibration process. Other 

deterministic errors, like turn-on biases, can be esti-
mated in real time via state augmentation. Forms of 
deterministic errors might include scale factor, nonlin-
earity, g-sensitivity for gyros, nonorthogonal axes, and 
axes cross coupling for vector measurements ( )u tv  [5], 
[41], [42] (see the “Deterministic Errors” section). The 
focus of this article is the stochastic error denoted by z(t), 
which may arise from a variety of physical phenomena 

( )
( )

( )
( )

cos
sin

sin
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Rv
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A navigation system calculates the vehicle’s state by inte-

gration of
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where 1ft  is an estimate of the accelerometer error vector and 

2ft  is an estimate of the gyro error. Equations (S6)–(S8) pro-

vide an example of (2) in the main portion of the article. The 

INS integrates these nonlinear equations to propagate the 

 vehicle’s state through time.

The inputs to (1) and (2) are, respectively,

( ) , ( ) , .u u u u u uandv v
1 2 1 2= =< <

<
<v v vt vt t6 8@ B

Because the actual inputs, u a gv
iv
v v

1 = -v v v  and ,u iv2 ~=  are 

not available, for the purpose of integrating (S6)–(S8), they are 

computed from the measurements as

.u u u uandv v v
1 1 1 2 2 2f f= + = +vt vu vt t u t

For use later, define

 .f

f
R un

d
v
g v

1=
vt

vt
t vt> H  (S9)

The calibration terms v
1fv
t  and 2ft  are computed using IMU 

error model parameters that are estimated in real time. These 

calibration parameters are denoted as ( )x tdv  for the IMU deter-

ministic errors and ( )x tzv  for the IMU stochastic errors in the 

augmented state vector defined in (5).

In this example, the vehicle’s state and estimated state are 

defined as

[ , , , , ] [ , , , , ] .x h v v x h v vandv n d v n dz i z i= = <<v vt t t t t t

Because the actual state xvv  is not known, the navigation er-

ror state defined as x x xv vd = -v v vt  is also not known. Defining 

,u u ud = -v v vt  the linearized error model of (4) would have
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The main purpose of this tutorial is to discuss the issues 

and methods related to defining the stochastic error state vec-

tor ( )x tzv  and its state-space model in the form of (6). When this 

is done, the F and G matrices defined previously are used with 

state augmentation methods to define the complete error model.

The augmented state-space model communicates to the 

mathematics of the state estimation process how both the IMU 

calibration states xdv  and xzv  change dynamically with time and 

how they affect the vehicle’s state estimate .xvv  The explicit 

method by which this is done uses (S12) to propagate the error 

state covariance matrix through time. It is critical to note that 

the vehicle’s state vector is propagated through time using the 

nonlinear kinematic model of (2); the linearized model of (S12) 

is only used to propagate the error covariance matrix.

For more extensions to this example (such as its use for de-

coupling the horizontal and vertical error dynamics to explain 

vertical channel instability and horizontal channel Schuler os-

cillation), see [3, p. 105].

In actual 3D applications, the attitude representation and 

its update become more complicated; nevertheless, the basic 

approach and issues remain the same.
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(see the “Background” section). The stochastic errors are 
distinct each time that the instrument is turned on, vary as 
a function of time, and cannot be predicted based on the 
sensor measurement ( ) .u tu

For clarity and simplicity, the majority of this tutorial 
will treat z(t) as a scalar signal. The underlying ideas apply 
to each of the three accelerometers and three gyros in a six-
degree-of-freedom IMU for the development of the full 
IMU stochastic error model.

State Estimation Error Model
Although the navigation system propagates the vehicle’s 
state vector through time by integrating the nonlinear 
model of (2), an error denoted by ( ) ( ) ( )x t x t x tv v vd = -v v vt  will 
develop between the actual and estimated state vectors. 
Regardless of the choice of representation of the vehicle’s 
attitude (for example, direction cosine matrix or quater-
nion), the attitude error can be represented by a vector with 
three components. Therefore, the vehicle’s error state con-
tains subvectors for position, velocity, and attitude error, 
each being a vector with three components such that 

( )x tv
nv0!dv  with nv = 9. This vehicle state error vector can 

be estimated in real time using measurements from the 
aiding sensors [10], [12], [13], [31], [43], [44]. The estimation 
algorithm incorporates a linearized state-space model for 
the error state

 ( ) ( ) ( ) ( ) ( )x t F t x t G t u tv vd d d= +vo v v  (4)

where /( ) ( , ) ,f x u xF t ( ), ( )x t u t2 2= v v v
vt vt  /( ) ( , ) ,f x ut uG ( ), ( )x t u t2 2= v v v

vt vt  and 
( )u td =v ( ) ( ) .u t u t-v vt  See the example F(t) and G(t) matrices 

in “Simplified Inertial Navigation System Example.” 
This state-space error model is not complete until the 

IMU error model for ( )u tdv  is specified. For state estima-
tion, it is required that the IMU error model be in state-
space form.

The real-time state estimation process is designed to 
estimate the augmented state vector

 ( ) ( ) ( ) ( )x t x t x t x tv d z
nx0!d= < < < <v v v v6 @  (5)

comprising the vehicle error state vector ( ) ,x tv
nv0!dv  the 

vector ( )x td
nd0!v  augmented to enable calibration of the 

IMU deterministic errors, and the vector ( )x tz
nz0!v  aug-

mented to enable calibration of the IMU stochastic errors. 
The total number of error states n n n nx v d z= + +  where nv 
is the number of vehicle error states, nd is the number of 
states augmented to calibrate deterministic errors, and nz 
is the number of states augmented to calibrate stochastic 
errors. The process of state augmentation as it relates to 
the problems of interest is discussed in “State Augmenta-
tion.” The presentation herein will focus entirely on the 
stochastic IMU errors whose cumulative effect in (3) is 
denoted by ( ) .z tv  The majority of this article will focus on 
a single IMU output for which a scalar z(t) is sufficient. 
The “Discussion of Issues and Tradeoffs” section consid-
ers the vector ( )z tv  case.

Denote the state-space model for scalar z(t)

 ( ) ( ) ( )x t A x t B tz z z z z~= +vo v v  (6)

 ( ) ( ) ( )z t C x t tz z zh= +v  (7)

where , ,A Bz
n n

z
n pz z z0 0! !# #  and .Cz

n1 z0! #  The param-
eter p represents the number of distinct and indepen-
dent noise processes in the differential equation portion 
of the IMU error model. The parameter nz represents the 

State Augmentation

The estimation algorithm estimates the augmented error 

state, as defined in (5). The dimension of this augmented 

state is .n n n nx v d z= + +

The state-space error model for the vehicle error state is 

defined in (4). The state-space model for the inertial measure-

ment unit (IMU) stochastic errors is defined in (6) and (7). For 

“State Augmentation” (to allow for modeling three accelerom-

eters and three gyros), the dimension of the output matrix will 

change to .Cz
n6 z0! #

Similarly, define the state-space model for the IMU deter-

ministic errors as

 ( ) ( ) ( )x t A x t B td d d d d~= +vo v v  (S10)

 ( ) ( )z t C x td d d= v  (S11)

where , ,A Bd
n n

d
n rd d d0 0! !# #  and .Cd

n6 d0! #  The param-

eter r represents the number of distinct noise processes in the 

deterministic error model. The parameter nd represents the 

 number of states selected to model the IMU deterministic er-

rors. The elements of xdv  in the deterministic error model are 

usually considered to be unknown constants; therefore, the 

corresponding model has Ad, Bd, and r all being identically zero 

[that is, ( ) .x t 0d =vo ]

Combining (4), (6), and (7), and (S10) and (S11), the linear-

ized state-space error model is

 x
F GC GC

A

x
x
x

G

B
0
0

0
0

0 0
0

0
0

d z

z

v

d

z z

z

z

d
h

~
= +vo

v

v

v

v

v> > > ;H H H E (S12)

where the time dependence of all quantities has been dropped 

from the notation.

Given a set of aiding measurements, the objective of the 

data fusion system is to estimate the augmented error state 

vector x(t), which is defined in (5) in real time. Success requires 

that the state vector be observable, which is a well-studied 

problem [S16], [S17], [S18].
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number of states in the IMU stochastic error model. 
The random signals ( )tz~v  and ( )tzh  are mutually inde-
pendent Gaussian white-noise processes with power 
spectral densities (PSDs) S p p

z 0! #
~  and ,S z 0!h  respec-

tively (see “Power Spectral Density”). The elements of 
( )tz~v  are assumed to be independent, which yields S z~  

being diagonal.
The designer must be judicious in the choice of model 

structure (particularly nz and p) as the overall model will 
have n6 z  states and p6  independent noise sources.

PSD for Linear State-Space Systems
Corresponding to the state-space model in (6) and (7), the 
frequency domain model is

 ( ) ( ) ( ) ( )Z s T s s sz zhX= +  (8)

where s is the Laplace variable. The transfer function model 
from ( )tz~  to z(t) is

( )T s C sI A Bz z z
1= - -^ h

which has one row and p columns. The symbols Z(s), 
( ),szX  and ( )szh  represent the Laplace transforms of the 

signals z(t), ( ),tz~  and ( ),tzh  respectively. Therefore, the 
PSD corresponding to signal z(t) is

 ( ) ( ) ( ) .S T j S T j Sz
T

z z~ ~ ~= - +~ h  (9)

Assuming that all elements of the driving noise vector 
( )tz~  and the output noise ( )tzh  are mutually independent 

and white, this simplifies to

 ( ) ( ) ( )S T j T j S Sz i i
i

p

1
z zi~ ~ ~= - +~ h

=

/  (10)

with

 ( )T s C sI A Bi z z z
1

i= - -^ h  (11)

where ( )T si  is the (scalar) transfer function from the ith 
component of ( )tz~v  to z(t), and Bz

n 1
i

z0! #  is the ith column 

of Bz. Each ( )T si  is the ratio of a numerator and denomina-
tor polynomial in s, and Sz is a positive real function of ~ . 
Therefore, each ( ) ( )T j T ji i~ ~-  and ( )Sz ~  will always be the 
ratio of polynomial functions of only the even powers of 
the Laplace variable s. The examples demonstrating this 
fact are presented in “Finite-Dimensional Linear State-
Space Systems Have Even-Power Spectra.”

The fact that Sz is a positive real function leads to one 
of the main challenges in the IMU error modeling 
approach because some of the IMU stochastic error com-
ponents have PSDs that cannot be exactly fit by the terms 
in the summation of (10). Therefore, the designer must 
make judicious choices in the approximate state-space 
model to achieve satisfactory tradeoffs. This will be fur-
ther discussed in the “Modeling Via Independent Noise 
Sources” section.

Available Error-Specification Information
To characterize the quality of an IMU (per IEEE specifica-
tions [28], [29], [30]), the manufacturer provides the AV plot, 
Allan standard deviation (ASD) plot, or the parameters 
extracted from them. An ASD graph can help instrument 
designers both understand and improve their sensors and 
communicate expected performance to perspective users. 
Within the context of this article, the main topic is how an 
INS designer can use information from an ASD plot to spec-
ify the parameters of the state-space model in (6) and (7).

Example ASD plots are shown in Figures 1 and 2. Figure 1 
displays the ASD plots for three gyros in a Crossbow μNav 
IMU [44]. These ASD are computed from data provided by 
the authors of [36]. The blue, black, and green asterisks (“✽”) 
mark the ASD data points. The ASD plot in Figure 2 is com-
puted from manufacturer-supplied data obtained from an 
IMU mounted on a large marble slab on top of a vibration 
isolation system. Each blue “x” in Figure 2 marks an ASD 
data point. The horizontal axis of each ASD plot is the clus-
ter time (or size), with the symbol x  measured in seconds. 
Note that the ASD plots in these two figures have both 
similarities and differences. Both decrease with the charac-
teristic slope of −1/2 for small cluster sizes, as indicated by 
the red dashed tangent line in each figure. Then, both level 

Power Spectral Density

For a s tat ionar y process,  the cor re lat ion func t ion 

( ) ( ) ( )R E x t x tG Hx x= +  and two-sided PSD are Fourier 

transform pairs related by

 ( ) ( )S e R dj~ x x=
3

3 ~x-

-
#  (S13)

 ( ) ( ) .R e S d2
1 jx
r

~ ~=
3

3 ~x

-
#  (S14)

Instrument error models include nonstationary stochastic 

processes such as random walk and integrated random walk. 

Nonstationary stochastic processes can be analyzed using av-

erage correlation functions and average power spectrum (see 

[11, Sec. 2.7] or [S26, p. 109]), which are related to each other 

in the same way as shown in (S13) and (S14). This article does 

not distinguish between the two.

REFERENCE
[S26] E. Parzen, Stochastic Processes. San Francisco, CA, USA: Hold-
en-Day, 1962.
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off to a slope of zero at values indicated by the dashed cyan 
tangent lines. For larger cluster sizes, the ASD in Figure 2 
increases with a slope of 1/2, as indicated by the tangent 
line drawn with black dashes. For cluster times as large as 
x  = 1000, the ASD plots in Figure 1 do not (strongly) exhibit 
this increase with a slope of 1/2. The value of x  and the 
ASD value at which these changes occur are distinct for 
each instrument. They specify certain parameters that are 
useful both for comparing the performance of inertial 
instruments and evaluating tradeoffs in the construction of 
the IMU stochastic error model.

Summary
This tutorial discusses issues and tradeoffs related to 
an example navigation system design method 1) using 

the AV information to specify the continuous-time pa -
rameters (for example, p, nz, Az, Bz, Cz, Sz, and Sh ) for an 
IMU state-space stochastic error model; 2) transforming 
this continuous-time model to the discrete-time, state-
space error model parameters ( , ,QzdU  H, Q dh ) that are 
required for implementation of the state estimator; 
and 3) verifying the IMU model relat ive to the AV 
information. Some previous articles have addressed 
some of the aforementioned topics [32], [34], [36], [39], 
[43], [44], [45], [46]. The goal of this article is to clearly 
and comprehensively present the background and 
main ideas in a tutorial fashion, using notations and 
terminology consistent with instrument specification 
standards [28], [29]. Examples are included throughout 
to clarify issues.

Finite-Dimensional Linear State-Space Systems Have Even-Power Spectra

The main portion of the article stated that the power spec-

trum for a linear state-space model (without pure delay) will 

be an even polynomial function of .s j~=  “Finite-Dimensional 

Linear State-Space Systems Have Even-Power Spectra” dis-

cusses two aspects of this statement.

STATE SPACE TO TRANSFER FUNCTION

Consider the single-input, single-output, finite-dimensional, 

linear state-space model

 ( ) ( ) ( )x t Fx t Gu t= +vo v  (S15)

 ( ) ( )z t Hx t= v  (S16)

where , ,F Gn n n 10 0! !# #  and .H n10! #  The parameter n 

represents the order of the system. The transfer function from 

u(t) to z(t) is denoted by ( ) ( ) ( )Z s U s T s=  where s is the La-

place variable, and Z(s) and U(s) are the Laplace transforms 

of z(t) and u(t), respectively. The transfer function T(s) can be 

computed from the state-space model parameters as (see  

[3, Sec. 3.5.2]):

 ( ) ( ) .T s H sI F G1= - -  (S17)

This transfer function is the ratio of polynomials in s, namely:

( ) ( )
( )

.T s D s
N s

=

The purpose of “Finite-Dimensional Linear State-Space 

Systems Have Even-Power Spectra” is to provide examples 

demonstrating that the power spectrum

( ) ( ) ( )
( ) ( )
( ) ( )

S T s T s
D s D s
N s N s

s j
s j

~ = =)
)

)

~
~

=
=

is an even polynomial function of ~. For related theory and ad-

ditional examples, see [55, Sec. 3.2–3.7].

STATE SPACE TO POWER SPECTRUM

Consider double-integrator state-space system 
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Using (S17), the transfer function is

( )
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.U s
Z s s

s s
1 0

0
1 0
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2=
-

=
-

6 ; ;@ E E

For ( ) ,T s s1 2=

( )
( ) ( )

S
j j
1 1 1

2 2 4~
~ ~ ~

=
-

=

which is an even polynomial function of ~. Additional examples 

can be found in many textbooks.

POWER SPECTRUM TO STATE SPACE

The fact that any power spectrum ( )S ~  that is an even (finite-

order) polynomial function of ~ can be represented by a 

finite-dimensional linear state-space system is shown by first 

factoring ( ) ( ) ( ),S T j T j~ ~ ~= -  where T is the ratio of finite- 

dimensional polynomials in j~  and then finding a state-space 

representation for T(s).

For example, the power spectrum ( )S A2 4~ ~=  can be 

factored as ( ) ( ) ( )A AS j j2 2~ ~ ~= -  where the first term 

provides the transfer ( ) .AT s s2=  The transfer function 

( ) ( )Z s U s sA 2=  is equivalent to ( ) ( ) .s Z s A U s 2 =  Multipli-

cation by s in the Laplace domain corresponds to differentia-

tion in the time domain. Therefore, ( ) ( ),z t Au t=p  which has the 

state-space model
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PROBLEM STATEMENT
The purpose of this article is to discuss the methods, issues, 
and tradeoffs related to developing a model that quantita-
tively communicates to the state estimation algorithm the 
nature of the stochastic portion of the IMU error. The inputs 
to this error model will be random signals.

The available information from the manufacturer for 
model development is the AV or ASD characterization. 
The actual IMU output data from the experiments that 
produce these characterizations are not available to the 
designer; therefore, system identification methods are 
not applicable.

Because the error state estimation algorithms are formu-
lated in state-space form, the IMU error models will also be 
in state-space form. The inputs are modeled as indepen-
dent Gaussian white-noise processes. The challenge is to 
construct these models such that they have the same output 
statistical characteristics (that is, AV) as the IMU.

Note that such stochastic state-space models are not 
unique. In fact, this article is not intended to propose a par-
ticular model; although a specific ASD plot is discussed 
and a model is given as a tutorial example. Instead, the goal 
of this article is to clearly present the approach that is used 
or hinted at (with various specific models) in various arti-
cles, books [9], and standards [28], [29], [30]. The authors 
view the many flavors of this approach as being industry 
standard. Unfortunately, many publications describing the 
method are not publicly available.

From a high level, an outline of the method is as fol-
lows: 1) A continuous-time state-space model is con-
structed using information from the AV/ASD plot. 2) 
The continuous-time IMU stochastic model is trans-
formed to an equivalent discrete-time model. 3) The 
discrete-time model is used in simulation to produce 
data, from which an ASD plot is computed for compari-
son with the instrument’s ASD plot. 4) When the designer 
is satisfied with the IMU error model, it is appended to 
the vehicle’s state error model and used for the design of 
the INS error state estimator.

BACKGROUND
Because the manufacturer-supplied AV/ASD information 
is the starting point for the stochastic error model develop-
ment, this section reviews the AV and its relationship to the 
PSD. A brief history of the AV is included in “A Brief His-
torical Review of the Allan Variance.”

AV
The AV is a well-known time domain analysis technique 
that was originally developed to characterize and study the 
frequency stability of oscillators [47], [48], [49]. Due to its 
relative simplicity, it has been successfully adopted to com-
municate IMU performance specifications and character-
ize their stochastic errors [28], [29], [32], [34], [36], [39], [43], 
[44], [45], [46].

Given a set of data, the process for computing the AV is 
as follows. Let { }D ui i

L
1= =u  be a (detrended) set of specific 

force (or angular rate) data, measured at a constant sam-
pling interval T for a stationary (that is, motion isolated) 
IMU. For each [ , / ],n L1 2!  the AV is computed for values 
of the cluster time nTx =  ranging from T to / .LT 2  For 
a given n, at each time instant [ , , , ( ) ],t T T L n T2i f! -  a 
group of n consecutive data points (beginning at ti) form a 
cluster: { } .uj j i

i n 1
=
+ -u  The average value is computed for each 

such n-point cluster: ( ) / .n uu 1 j
n

i ji 0
1x R= =
-

+r u^ h  The AV for 
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A Brief Historical Review of the Allan Variance

The Allan variance (AV) was originally proposed in the 1960s 

for the study of frequency stability of oscillators and sig-

nal generators [48], [49], [S27]. Since its definition, the AV has 

found utility for the specification of inertial measurement unit 

(IMU) performance. The IEEE standards are written in terms of 

the AV [28], [29], [30]. This section provides a very brief intro-

duction to the history of the AV.

Consider a signal generator with instantaneous output volt-

age V(t) given by

 ( ) ( )( ) sinV t V t t t20 0ro {e= + +6 6@ @  (S18)

where V0 and 0o  are the nominal output amplitude and fre-

quency, respectively; and ( )te  and ( )t{  are the instanta-

neous random amplitude and phase fluctuations. From ( ),t{  

the instantaneous fractional frequency fluctuation u(t) is de-

fined as

 ( )
( )

.u t
t

2 0

{
ro

=
o

 (S19)

Before the introduction of the AV, the standard measure 

of frequency stability was the spectral density ( ) .S fu  The AV 

is an alternative, time-domain measure of frequency stability 

defined as

 ( : , ) .N T N u N u1
1 1

u s k j
j

N

k

N
2

1

2

1

v x =
-

-
==

r re o//  (S20)

The notation ( , , )N Tu s
2v x  is standard in AV literature. “A 

Brief Historical Review of the Allan Variance” uses the more 

descriptive notation ( : , )N Tu s
2v x  to indicate that N and Ts are 

parameters that the analyst selects to evaluate the value at 

cluster duration .x  In this notation, N is the number of clusters 

of duration x  that are used in the computation, and Ts is the 

time between the start of consecutive clusters. The operator 

·G H  indicates an infinite time average. In (S20),

 ( )u u t dt1
k

t

t

k

k

x
=

x+

r #  (S21)

with .t t Tk k s1= +-  The expression in (S20) can be understood 

as the sample variance of N averages of u(t) each over a time 

interval of duration .x  The minimum value of x  and Ts is the 

sample period T. The symbols used in this discussion are de-

fined in Table S1. The relationship between these parameters 

is illustrated in Figure S3. In the case where the time interval 

satisfies ,Ts 2 x  the computation has dead time between clus-

ters where data are unused.

The “Two-Sample Without Dead-Time” formula

 ( ) ( : , )
u u

2 2u u
k k2 2 1

2

/v x v x x =
-+r r^ h

 (S22)

[that is, ( , , ) ,N T2u s
2v x x= =  in the standard notation] is rec-

ommended in [48] and [49] and eventually became known as 

the AV.

As practical data records are of finite length, infinite time 

averages are not available; therefore, approximations are re-

quired. Barnes et al. [49] proposed and studied

 ( ) ( ) .m u u2 1
1

u k k
k

m
2

1
2

1

1

v x =
-

-
=

-

+t r r^ h/  (S23)

Note the hat in the left side of (S23), which indicates that 

it is designed as an estimate of ( )u
2v x  defined in (S22). This 

formula has become known as the nonoverlapping AV, in refer-

ence to the fact that .Ts x=

Because the duration of the available dataset is finite, for 

each value of x  and choice of Ts, the number of clusters m will 

change (with longer clusters and larger values of Ts yielding 

smaller values of m). Given a data record with L samples and a 

constant sample period T, the total experiment duration is LT  

Symbol Meaning 

T Sample period for u(t) 

L Total number of samples in the dataset 

LT Duration of the dataset 

x  Cluster or averaging duration 

n Number of sample periods per cluster: nTx =  

N Number of clusters of duration x  used in (S20)

m Number of values of ( : , )2u
2v x x  averaged in (S23) 

tk Start time of the kth averaging interval [see (S21)] 

Ts Time interval between consecutive averaging 
intervals 

ukr  Average of u(t) for [ , ]t t tk k! x+  [see (S21)] 

TABLE S1 Symbols used in the discussion of the Allan 
variance.

FIGURE S3 The relationship between T, ,x  Ts, tk, and ukr  for this 
example: T5x =  and ;T T7s =  therefore, it has a dead time of 2 T.

t1 t2 t3 t4 t5 tk

T T T T T

u1 u2 u3 u4 u5 uk

τ τ τ τ τ

Ts Ts Ts Ts Ts
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seconds. The number of averages ukr  (that is, clusters) that 

can be computed for a cluster duration of ,nTx =  without dead 

time, is / .m L n=

Several alternative AV formulae have been proposed based 

on different choices for Ts. For instance, Howe et al. [S28] 

introduced the (fully) overlapping AV with T Ts =  [which is the 

same as (12)]

 ( ) ( ) .L n u u2 2
1

u k n k
k

L n
2 2

1

2

v x =
-

-
=

-

+t r r^ h/  (S24)

Its stated objective is to provide the best confidence in the 

estimates, which is achieved by high data utilization, that is, 

the number of formed averages ukr  is no longer / ,m L n=  but 

instead, ;m L n= -  therefore, estimation accuracy of the over-

lapping AV [based on ( )L n2-  differences] increases dramati-

cally (relative to the nonoverlapping AV) for long cluster times. 

The overlapping AV has since become the standard for IMU 

stochastic error modeling [28], [29].

Allan and Barnes [S27] modified the overlapping AV to im-

prove its ability to distinguish stochastic processes with spec-

tral densities ( )S f fu . a  such that 1 2ora =+ +  (flicker phase 

noise and white phase noise, respectively). However, these are 

generally not the main sources of stochastic errors corrupting 

an IMU [see (17)].

A more recent alternative to (S24) is the not fully overlap-

ping AV, wherein T Ts2 2x  [53]. In the article, the authors 

show that the method has similar estimation accuracy to the 

(fully) overlapping AV (but at a reduced computational cost), 

which is relevant because AV analysis for IMU characterization 

generally requires large datasets.

It is not the purpose of this tutorial to detail the histori-

cal development of the AV [47], [S29], [S30]. For the inter-

ested reader, Table S2 summarizes and compares various 

formulations of the AV and provides pointers to selected 

references. 
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AV Estimate Stated Benefits
Selected 
References

Nonoverlapping 
with Dead  
Time (NODT)

— [38], [48]  
[S33], [S34], [S35], 
[S36], [S37]

Nonoverlapping 
(NO)

Simpler to compute 
(compared to NODT)

[49], [50], [51]  
[S34], [S38], [S39]

Overlapping (O) Gives high data 
utilization/better 
confidence in  
the estimate 
(compared to NO)

[S28], [S40], [S41], 
[S42]

Modified (M) Able to better 
distinguish some 
types of noise 
(compared to O)

[S27], [S42], [S43]

Not fully 
Overlapping 
(NFO)

More computationally 
efficient (compared 
to O)

[53]

TABLE S2 Main Allan variance-estimation formulae.
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duration x  is then computed as the average of the ( )L n2-  
squared-cluster differences [28], [48]:

 ( ) ( ) [ ( ) ( )] .L n u u2 2
1

u
i

L n

i n i
2

1

2
2v x x x=

-
-

=

-

+t r r/  (12)

As some IMUs (especially those that are high grade) 
provide the integral of specific force (or angular rate), 
denoted as , ( ),ui ii xu r  they may alternatively be defined as

 ( ) .ui
i n ix
x

i i= -+r
u u

 (13)

The substitution of (13) into (12) yields

 ( )
( )

( )
L n2 2
1 2u i n i n i

i

L n
2

2 2
2

1

2

v x
x

i i i=
-

- ++ +

=

-

t u u u/  (14)

which is an alternative formula for computing the AV [28].
For graphical analysis, the square root of the AV, ( ),uv xt  

called the ASD, is typically plotted on a log-log scale with 
cluster time x  along the horizontal axis. Due to the finite 
length of dataset D, the number of clusters with duration 
x  will decrease as x  increases; therefore, the standard 
deviation of the computed ASD, ( ),uv xt  increases with n 
(or x ) as [50], [51]

 ( )  ( )L
n

u uv v x l v x=t t6 @  (15)

where l  is an empirical constant that is generally approxi-
mated as /1 2.l  for IMU error analysis [28], [29], [34], 
[52], [53].

PSD and AV
The AV is related to the two-sided PSD by

 ( ) ( )
( )

( )
.

sin
S f

f
f

df4u u
2

0 2

4

v x
r x

r x
=

3#  (16)

The text following [28, Sec. C.1] interprets this equation as 
the AV being proportional to the total noise power in the 

signal u when passed through a transfer function that is 
determined by the method that is used to create and oper-
ate on the clusters. The derivation of (16) can be found in 
[54, p. 79]. There is no inversion formula for (16) (see [52]). In 
this expression, ( ) ( ) ,S f S su u s j f2= r=  where s C!  is the 
Laplace variable, ,j 1= -  and f 0!  has units of Hertz.

Modeling Via Independent Noise Sources
When the power spectrum is represented as a power series 
in frequency f, it has the form

 ( )
( )

.S f N f
B

f
K

2 2u
2

2

2

2
g g

r r
= + + + +  (17)

This form of the PSD is convenient. By the principle of 
superposition, it corresponds to the power spectrum of 
the signal

 ( ) ( ) ( ) ( )u t z t z t z tN B Kg g= + + + +  (18)

where the signals ( ), ( )z t z tN B  and ( )z tK  are mutually inde-
pendent, zero-mean noise processes. With this assumption, 
applying (16) to (17) yields an AV having the form

 ( ) ( ) ( ) ( )u z z z
2 2 2 2

N B Kg gv x v x v x v x= + + + +  (19)

where the specific functional form of each AV term can be 
computed and is available in various sources [28], [29], [30], 
[34], [54]. The functional form of each AV term is easily 
associated with a portion of the ASD graph.

The “Continuous-Time State-Space Models” section 
describes the method for making this association and defin-
ing a continuous-time state-space model for each term. The 
state-space model for each term is driven by its own inde-
pendent, Gaussian, white driving noise, resulting in each 
of the signals, ( ), ( )z t z tN B  and ( ),z tK  being mutually inde-
pendent. These state-space models can be exact for the 
terms that correspond to even functions of f in (17). How-
ever (as previously stated and exemplified in “Finite 
Dimensional Linear State-Space Systems have Even Power 
Spectra”), the power spectrum terms that are odd func-
tions of the frequency f (for example, the term B f22 r^ h) 
cannot be exactly modeled by any finite-dimensional, 
linear state-space model. Therefore, these terms must be 
approximately modeled, carefully balancing tradeoffs that 
are discussed later.

Any number of terms may be included in the power 
series representation of (17). This results in the same number 
of terms in the signal model of (18) and the AV model of 
(19). Each term represents a different type of noise coming 
from an independent source. The typical shape of the 
ASD graph is depicted in Figure 3 with five independent 
noise sources (see also [28, Fig. C.8]). In the ASD plot, 
each noise type is associated with a characteristic slope 
that facilitates identification of that noise type and its 
model parameters. Not all noise types are evident in each 
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FIGURE 3 A typical gyro Allan standard deviation (ASD) shape 
corresponding to (17)–(19). 
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instrument. When present, the model parameters and 
range of x  over which the noise term is dominant may be 
different for each instrument.

The N, B, and K terms are typically dominant in commer-
cial-grade IMUs (see, for example, Figures 1 and 2). Instru-
ment design choices (for example, quantization approach 
and sample period) cause the stochastic error to appear 
as white noise for small x . This white noise is accounted 
for in the random walk noise term (that is, N). However, 
the stochastic error is not truly white. As the cluster time 
x  increases, the ASD plot may exhibit bias instability (B), 
rate random walk (K), and other noise types. For the ASD 
plot to exhibit these other noise types, the IMU dataset 
used to generate the ASD plot must be very long. When 
the INS is designed to work with aiding measurements 
that are expected to occur frequently (for example, sev-
eral times per minute), the state estimator will have the 
aiding information that it needs to maintain the INS cali-
bration in real time while those aiding measurements are 
available. The ASD plotting out to several minutes (for 
example, hundreds of seconds) is of interest for analyzing 
performance during intervals when the aiding measure-
ments are not available. However, the specific shape of 
the ASD curve for very large x  is typically uncertain and 
not of interest.

Columns 1 and 2 of Table 1 include the specific names of 
the N, B, and K noise terms for gyros and accelerometers. 
Columns 3 and 4 of Table 1 summarize the relationships 
between the AV and PSD for these noise types, as derived 
in [28], [34]. The N, B, and K terms will be the focus of the 
discussion in the “Continuous-Time State-Space Models” 
section. The underlying ideas of the approach extend to 
other types of noise when the ASD for a particular instru-
ment exhibits them.

CONTINUOUS-TIME STATE-SPACE MODELS
This section considers the development of continuous-time 
state-space models that approximately reproduce the ASD 
plots and the PSD of (17). The ideas throughout will be 
illustrated using the example ASD in Figure 2. Figure 1 will 
only be discussed in reference to the B and K power series 
terms. The overall model will have the form

 ( ) ( ) ( ) ( )z t z t z t z tN B K= + +  (20)

where ( ), ( )z t z tN B , and ( )z tK  are the IMU stochastic error 
signals associated with coefficients N, B, and K, respectively.

Random Walk Errors: Angular and Velocity: zN(t)
The PSD term N2 in (17) is constant with respect to fre-
quency f, which corresponds to the power spectrum of 
white noise [55]. Therefore,

 ( ) ( )z t tN N~=  (21)

where ( )tN~  is white Gaussian random noise with PSD

 .S NN
2=  (22)

In the literature and manufacturer specifications, this type 
of error is called angular random walk error for gyros and 
velocity random walk error for accelerometers.

Applying the transformation in (16) to ( )S f Nz
2

N =  
yields [28]

 ( ) or ( )N N      /z z
2

2

1 2N Nv x
x

v x
x

= =  (23)

which is summarized in the corresponding row of Table 1. 
This shows that on an ASD plot, angular/velocity random 
walk will be represented by a line with a slope of / ,1 2-  as 
shown in Figure 4.

The value of the random walk parameter N can be 
approximately determined from the manufacturer-sup-
plied ASD plot. This is accomplished by identifying the 
range of x  on the ASD plot that has a slope of /1 2-  and 
drawing a line tangent to it. In Figure 2, a red dashed tan-
gent line is drawn for [ . , ] .0 01 30!x  From (23), it is clear that 

( )| .Nz 1Nv x =x=  Therefore, the value of N can be extracted 

Noise Type  
(Coef.)

Coef. 
Unit

Allan  
Variance  
Accel.: (m/s2)2 

Gyro: 
(degree/s)2

Power Spectral 
Density 
Accel.: m2/s3 

Gyro: 
degree2/s

Ang./vel. 
random  
walk, N

Accel.: m/s3/2 

Gyro:  
degree/s1/2

N2

x
 N2 

Bias 
instability, B 

Accel.: m/s2 

Gyro: degree/s 
( )lnB2 22

r  f
B
2

2

r  

Rate/accel. 
random  
walk, K

Accel.: m/s5/2 

Gyro:  
degree/s3/2

K
3

2x
 f

K
2

2

r
c m  

Coef.: coefficient; Accel.: acceleration; Ang.: angle; vel.: velocity.

TABLE 1 Dominant errors in consumer-grade inertial 
measurement units.
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FIGURE 4 The angular/velocity random walk Allan standard devia-
tion (ASD) plot [see (23)]. 
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from the ASD plot as the value of the tangent line (with a 
slope of /1 2- ) at x  = 1 s. For the example of Figure 2, the 
result is .N 0 0033.  m/s ./3 2

Random Walk Errors: Rate and Acceleration: zK(t) 
The term 

( )f
K

s
K

s
K

s j f2 22

2

=
r r=

)` j  in (17) corresponds to a linear 
system with transfer function ( ) / .T s s1=  A state-space 
model is

 ( ) ( )z t tK K~=o  (24)

where ( )z tK  is the output, and the input ( )tK~  is white 
Gaussian noise with PSD

 .S KK
2=  (25)

In the literature and manufacturer specifications, this type 
of error is called rate random walk error for gyros and accel-
eration random walk error for accelerometers.

Given (24) and (25), the PSD of ( )z tK  is

 j( ) ( ) ( )|S f T s T s K
f

K
2

z s f2
2

2

2

K
r

= =)
r=^ ^h h  (26)

which has the desired form corresponding to the third 
term in (17). Using (16) on this ( )S fzK  yields [28]

 ( ) or ( )K K3 3  z z
2

2

K Kv x
x

v x
x= =  (27)

which is summarized in the corresponding row of Table 1. 
Equation (27) shows that on an ASD plot, the rate/accelera-
tion random walk error will be represented by a line with a 
slope of / ,1 2+  as shown in Figure 5.

The rate/acceleration random walk parameter K can be 
approximately determined from the manufacturer-sup-
plied ASD plot. The first step is to identify the range of x  on 
the ASD plot that has a slope of /1 2+  (if it exists) and draw 
a line tangent to it. In Figure 2, the dashed black line drawn 

for [ , ]3 500!x  s has a slope of /1 2+  and is approximately 
tangent to the ASD curve at values of 100$x  s. Because x  
is large, this portion of the ASD plot usually has a higher 
degree of uncertainty [as discussed relative to (15)]. The 
second step uses the tangent line to estimate K. From (27), it 
is clear that ( )| .KzKv x =3x=  Therefore, an easy way to esti-
mate the value of K from the ASD plot is to find the value of 
the straight-line approximation when x  = 3 s. In the exam-
ple of Figure 2, depending on how the analyst determines 
the straight-line approximation, K . 0.00014 m/s ./5 2

Based on the ASD plots in Figure 1, the gyros in the 
μNav unit may not require inclusion of angular rate random 
walk noise for cluster times up to 1000 s.

Cumulative Error Model: N, K
As the angular random walk and rate random walk errors 
(or velocity random walk and acceleration random walk 
errors) each have even-power spectra, it was straightforward 
to establish state-space models to reproduce the correspond-
ing terms in the power spectrum and their portions of the 
ASD plot.

Based on the two previous sections, the state-space 
model would be

 ( ) ( )z t tK K~=o  (28)

 ( ) ( ) ( )z t z t z tNK N K= +  (29)

where ( ) ( )z t tN N~=  is white random noise with PSD N2, 
and ( )tK~  is white random noise with PSD K2. The random 
signals ( )tN~  and ( )tK~  are independent, which results in 

( )z tN  and ( )z tK  being independent. The ASD for this 
model is

 ( ) .N K
3NK

2
2 2

v x
x

x= +  (30)

The ASD plot for this model using the values N = 0.0033 m/s /3 2  
and K = 0.00014 m/s /5 2  is shown in Figure 2 as the solid 
green line.

Bias Instability: zB(t) 
Some ASD plots (such as those in Figure 1) do not exhibit 
the +1/2 slope associated with ( )z tK  but do have a wide flat 
region for larger values of x . This flat region cannot be 
well modeled by either the N or K terms. For other instru-
ments, the ASD plot may exhibit a wide and flat portion 
between the values of x  corresponding to the N and K 
regions. In this case, the AV (and ASD) in (30) for the NK 
model may be too small in this middle range of x . In either 
of these circumstances, there is enough bias instability 
such that performance may be improved by accounting for 
it in the model.

The error term ( )z tB  corresponding to ( )S f B f2z
2

B r= ^ h 
is generally referred to as bias instability (or flicker noise) 
[28], [29], [34], [39], [44]. Applying (16) to ( )S f B f2z

2
B r= ^ h 

for f f0#  (and zero otherwise) yields [28]
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FIGURE 5 The rate/acceleration random walk Allan standard deviation 
(ASD) plot [see (27)]. 
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( ) ( )

( )
( ) ( ) ( )[ ]ln

sin
sin cosB

x
x

x x x Ci x Ci x2 2
2

4 2 4z
2

2

2

3

Bv x
r

= - + + -

 (31)

where ,  x f Ci0r x=  is the cosine integral function [56], and 
the parameter f0 is defined as the cutoff frequency [28].

The bias-instability ASD plot is shown in Figure 6. The 
figure shows that ( )zBv x  grows for small x , reaching a 
plateau for .f1 02x ^ h  Therefore, the value of f1 0.x  
defines the portion of the ASD plot for which the bias insta-
bility (or flicker noise) contributes its maximum value to 
the SD plot. In this region, it is possible to show that the 
sine and cosine terms in (31) approach zero, so that in the 
flat region,

 ( )
( )

or ( ) . .
lnB

B
2 2

0 664          z z
2

2

B B. .v x
r

v x  (32)

These equations provide a simple method for extracting an 
approximate value of B from the ASD plot. In this approach 
(see, for example, [35, p. 6], [44, p. 21], [53, p. 10], and [54, p. 
114]), as can be inferred from [28, Sec. B.4.5], the value of B 
would be selected so that ( )lnB2 22 r^ h approximates the 
plot of ( )z

2v x  for the values of x  for which the ASD plot is 
flat. For the ASD plot in Figure 1, the cyan horizontal lines 
approximate the minimum ASD values of 9.5e-3 and 
1.40e-2 degree/s, which correspond to values of B between 
1.43e-2 and 2.11e-2 degree/s. For the ASD plot in Figure 2, 
the minimum ASD value of . e7 4 4-  m/s2 corresponds to 

.B e1 11 3= -  m/s2.
Because the power spectrum of the bias-instability term 

(that is, B f22 r ) is not an even power of ,s j f2r=  there is no 
finite-order linear state-space model that fits it exactly. As a 
consequence, the navigation system designer must select a 
state-space model that approximates the bias-instability 
error effects. This is somewhat of an art, as each IMU is 
distinct, each application has different specifications, and 
each designer may have different ideas about suitable 
models and tradeoffs.

Various methods have been suggested to approxi-
mately account for bias instability. These include first-
order Gauss–Markov [4], [32], [36], [39], [44], [57] and 
higher-order autoregressive models [43], [45], [46]. One 
important tradeoff is that, as the dimension of the state-
space model increases, the fidelity of the approximation 
may increase, but so too does the required real-time 
computational load of the state estimation algorithm. In 
addition, more elaborate models may not be robust to 
unmodeled dynamics and nonlinearity, especially when 
some added states are weakly observable. These topics 
are analyzed further in the “Discussion of Issues and 
Tradeoffs” section.

To exemplify the idea, the next section considers a first-
order Gauss–Markov model, which uses exponentially cor-
related noise to model the bias-instability error.

Gauss–Markov Error Model
A first-order continuous-time Gauss–Markov model is 
[9], [55]

 ( )  ( ) ( )z t z t tG B G Bn ~=- +o  (33)

with

 ,  where .T T1 0B
B

B 2n =  (34)

The symbol TB represents the correlation time of the pro-
cess. The symbol ( )tB~  represents a white driving noise 
with PSD SB.

The transfer function corresponding to (33) is

( )T s s
1

Bn
=
+

which yields the PSD

( ) .S S
z

B

B
2 2G ~
~ n

=
+

Applying (16) to ( )S szG  yields [28]

 ( )  .S T T e e1 2 3 4z
B B B T T2

2 2
G B Bv x

x x
= - - +

x x- -^ h; E  (35)

A plot of ( )zGv x  is shown in Figure 7. The following special 
cases are noteworthy:

 » For smaller cluster times where 1 ,TB1x

 ( ) S
3z
B2

G .v x
x  (36)

 so that the ASD plot has a slope of /1 2+  for small x .
 » When .  ,T1 89 Bx =  the curve is flat with

 ( . ) ( . )T S T1 89 0 4365z B B B
2 2

Gv =  (37)

 or ( . ) . .T S T1 89 0 4365z B B BGv =

 » For larger cluster times, where ,TB2x 2

10 B

1 B

0.1 B

0.01 B

A
S

D
, σ

z B
 (
t
),

 (
m

/s
2 )

10–2 10–1 100 101 102

Cluster Time, t, (s)

0.664 B Slope = 0

Slop
e 

= 
1

FIGURE 6 The bias-instability Allan standard deviation (ASD) plot 
with f 10 =  [see (31)]. 
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 ( ) S T
z

B B2
2

G .v x
x

 (38)

so that the ASD plot has a slope of /1 2-  for large x .
The first-order scalar Gauss–Markov process can be used 
(approximately) to model the flat portion (that is, bias insta-
bility) of the ASD plot.

If the manufacturer provides only the values of B and TB, 
then the value of μB can be computed using (34). The value 
of SB is selected by setting z

2
Bv  from (32) equal to z

2
Gv  [as 

given by (37)], and solving for SB:

 
( . )

( )
.S

T
B

0 4365
2 2ln

B
B

2

2

r
=  (39)

With μB and SB known, the state-space model of (33) is com-
pletely specified.

If, instead, the manufacturer provides the ASD plot, and 
the bias instability is significant enough to warrant inclu-
sion in the model, then the analyst can first select TB so that 

. T1 89 B  lies near the flat portion of the ASD plot. Then, 
choose SB so that the value of ( . ),T1 89z BGv  as defined in (37), 
approximates the value of the ASD plot in its flat region. 
For the ASD plot in Figure 2, the minimum value is  

. e7 4 4-  m/s2 at x=60 s. These values correspond to 
.T 31 7B =  s, .S e9 0 8B = -  m2/s5, and .B e1 11 3= -  m/s2.

Cumulative Error Model: N, B, K
Consider the two-state, state-space model structure where 
z(t) is modeled by (20), ( )z tN  is modeled by (21), ( )z tK  is 
modeled by (24), and the bias-instability term in (20) is 
modeled by ( ) ( )z t z tB G= , as defined in (33). This yields a 
two-state model in the form of (6) and (7) with

 ,  ,  A B C0
0
0

1
0

0
1 1 1z

B
z z

n
=
-

= =; ; 6E E @ (40)

where ( ) ( ), ( ) ,x t z t z tz G K= <v 6 @  ( ) ( ), ( ) ,t t tz B K~ ~ ~= <v 6 @  and 
( ) ( ) .t tz Nh ~=  The continuous-time process noise PSD 

matrix S z~  of z~  is

 S
S

S0
0B

K
z =~ ; E (41)

and the measurement noise PSD is .S SNz =h

The ASD for this state-space model is

 ( ) ( ) ( ) ( ) /
z z z z

2 2 2 1 2
N G Kv x v x v x v x= + +^ h  (42)

where the three ASD terms on the right are defined in (23), 
(27), and (35), respectively.

Figure 8 builds on the ASD plot in Figure 2. The data 
(blue “x”s) and K and N tangent lines are the same. Figure 8 
also shows the ASD of (42) using the two sets of parame-
ters, as summarized in the second and third rows of 
Table 2 (that is, “Untuned Value” and “Manually Tuned 
Value,” respectively).

The untuned parameters from the second row of the table 
are those stated at the end of the “Gauss–Markov Error 
Model” section. These values result in the green dashed curve, 
which is clearly too high in the region of the curve near its 
minimum. The aforementioned suggested approaches for 
choosing N, B, and K independently neglect the fact that for 
each x , the AV for each type of noise is additive:

 ( ) ( ) ( ) ( ) .z z z z
2 2 2 2

N B Kv x v x v x v x= + +  (43)

Therefore, the parameters N, B, K, and TB should instead be 
adjusted jointly so that the three-term AV (or ASD) model 
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FIGURE 8 The Allan standard deviation (ASD) from Figure 2, along 
with ASD plots for N, B, and K. 

Coef. N B K TB

Untuned value 0.0033 0.0011 0.00014 32 

Manually tuned value 0.0033 0.0004 0.00014 20

Optimization-based 
value

0.0033 0.0001 0.00012 50 

Unit m/s3/2 m/s2 m/s5/2 s 

Coef.: coefficient.

TABLE 2 The extracted Allan variance parameters related 
to Figure 8.
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FIGURE 7 The Gauss–Markov Allan standard deviation (ASD) plot 
with q S TB B B=  [see (35)]. 
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fits the ASD plot for the instrument data. Manually adjust-
ing the values of TB and B to those in the third row of Table 2 
results in the solid green curve, which is a better fit. An 
optimization-based approach to selecting the parameters is 
discussed in the “Optimization-Based Parameter Selection 
for a Given Model” section. Figure 8 includes the curve for 
the Gauss–Markov ASD of (35) plotted as a cyan dashed 
line, using the tuned values of TB and SB.

Summary
Many alternative choices for the structure of the state-space 
model exist: no states, just zN; a single-state zG and zN; single-
state zK and zN; generalizations of the aforementioned two-state 
model; and higher dimensional models. Various topics related 
to selection of the structure of the state-space model are pre-
sented in the “Discussion of Issues and Tradeoffs” section.

DISCRETE-TIME EQUIVALENT MODEL
The previous section discussed the process of determining 
a continuous-time state-space model with the form of (6) 
and (7) to approximate IMU error characteristics, as quanti-
fied by the ASD (or power spectrum) plot. As the INS and 
EKF are implemented in discrete time, the state-space IMU 
error model must be transformed to the equivalent dis-
crete-time form:

 ( )  ( ) ( )x k x k k1z z z~U+ = +v v v  (44)

 ( )  ( ) ( )z k H x k kz h= +v  (45)

where discrete-time k index corresponds to continuous-
time ,t kT=  ( )~ ( , )k N Q0z zd~v  is a white Gaussian random 
variable with covariance ,Qzd  and ( )~ ( , )k N Q0 dh h  is a white 
Gaussian random variable with covariance .Q dh  The pro-
cesses ( )kz~v  and ( )kh  are independent. Within this article, 
equivalent means that the continuous- and discrete-time 
stochastic error models produce the same first- and second-
order statistics at the IMU sampling times.

The following sections describe how to compute the 
discrete-time model parameters ( , ,QzdU  H, )Q dh  required 
for discrete-time estimator implementation from the con-
tinuous-time model parameters ( , , , , ) .A B CS Sz z zz z~ h  

Discrete-Time Equivalent to (6)
The process of transforming the continuous-time model of 
(6) to the discrete-time state-space model of (44) is described 
in various references (see, for example, [58, Sec. III.D] or 
[3, Sec. 4.7]) with

 e  andA TzU =  (46)

 ( , ) ( ) ( , )Q T s B S s B T s dsz

T

z z
T T

0

d zU U= ~#  (47)

where T t tk k 1= - -  is the IMU sampling interval, and 
( , ) ( )( ) .expT s A T szU = -  Both U  and Qzd  can be computed 

simultaneously using a method by Van Loan [59], as described 
in [58, Appendix I].

Depending on the method used to model the bias insta-
bility and the state definition, the Az matrix in the continu-
ous-time state-space model may have various forms. For 
the cumulative N, B, K error model with the discrete-time 
state vector ( ) ( ), ( ) ,x k z k z kz G K= <v 6 @  the Az matrix in (40) 
transforms to

 .
e

0
0
1

TB

z =
n-

; E  (48)

As Az and S z~  are constant and diagonal, and Bz is the 
identity, (47) simplifies to

 

( ( ))

( )
.

exp
Q

S T p dp

S T
S e

S T

2

0

0

2 1

0

0

z
B

T
B

K

B

B T

K

0

2

d

B

n

n

=
- -

=
- n-

>

> H

H#

 

(49)

Because T TB%  and ,T
1

B
B

n =  it is clear after expanding 
the exponential term that

 .Q S T
S T

S T0
0

z
B

K
d z. =~ ; E  (50)

Discrete-Time Equivalent to (7)
The objective of this section is to determine an equivalent 
discrete-time measurement model having the form of (44) 
and (45) that is equivalent to (6) and (7).

Because the method of the previous section was 
designed such that (6) and (44) produce the same first- and 
second-order statistics for the state, it is the case that H = Cz. 
The only item left for consideration is to determine how to 
compute the covariance Q dh  from the PSD SN so that the 
overall effect (in terms of the first two moments) of z(k) on 
the integrated state in the augmented state-space model is 
the same as that of z(t) at the sampling periods.

Using the principle of superposition, assume that the 
driving noise terms ( )tB~  and ( )tK~  [and therefore ( )]tz~  are 
zero, and the covariance of the initial conditions is zero so 
that the only remaining nonzero error is ( ),tzh  which equals 

( ) ( )t z tN N~ =  [according to the model in (21) and (40)]. Con-
sider the simple case where the kinematic model of (1) is

 ( ) ( ) .x t u tv =o  (51)

This could, for example, correspond to u being an 
angular rate (or acceleration) measurement and xv repre-
senting the angle (or velocity). In continuous time, the 
navigation system would use the measurement ( )u tu  to 
compute ( ),x tvt

 ( ) ( ) .x t u tv =to u  (52)
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With the assumptions stated at the beginning of the 
paragraph,

 ( ) ( ) ( ) .u t u t tzh= +u  (53)

Define the error signal, ( ) ( ) ( ) .e t x t x tv v= - t  Based on 
(51)–(53),

 ( ) ( )e t tzh=-o  (54)

where according to (21) and (22), the PSD of ( ) ( )t tz Nh ~=  
is SN. In this special case, e(t) is a continuous-time random 
walk process. Due to the assumption that the initial covari-
ance of e(t) is zero [that is, cov( ( )) ( ) ,e P0 0 0e= =  the covari-
ance function [that is, cov( ( )) ( ),]e t P te=  is

 ( ) ,  .P t S t t 0for any e N $=  (55)

This result is derived in many textbook discussions of 
the continuous-time random walk processes, for example, 
the discussion in [3, Sec. 4.85].

The discrete-time model equivalent to (51) is

 ( ) ( ) ( ) .x k x k u k T1v v+ = +  (56)

The discrete-time model equivalent to (52) is

 ( ) ( ) ( ) .x k x k u k T1v v+ = +t t u  (57)

Given the discrete-time measurement model

 ( ) ( ) ( )u k u k kh= +u  (58)

where ( ( ))cov k Q dh = h  [as defined in (45)], the error 
signal ( ) ( ) ( )e k x k x kv v= - t  has the time propagation model

 ( ) ( ) ( ) .e k e k k T1 h+ = -  (59)

In this special case, e(k) is a discrete-time random 
walk process. Equation (59) allows computation of the 
discrete-time error covariance caused by ( )kh  [that is, 

( ) ( ( )),]covP k e ke =  as

 ( ) ( ) ,    P k P k T Q k1 0for anye e
2

d $+ = + h  (60)

where Q dh  is defined in (45). Due to the assumption that the 
initial covariance of e(k) is zero,

 ( ) ,    .P k kT Q k 0for anye
2

d $= h  (61)

Given the equivalence objective stated in the first sen-
tence of this section, the continuous and discrete time 
must result in the same values for the error covariance at 
the discrete sample times. Equating the covariance of 
the continuous- and discrete-time random walk error 

processes at the sampling times, that is, setting (55) equal 
to (61) yields

( )| ( )P t P k

S kT kT Q
e t kT e

N
2

d

=

= h

=

which provides [see also “Discussion of (62)”]

 .Q T
SN

d =h  (62)

This equation relates the covariance Q dh  of the discrete-
time IMU measurement noise (needed for the state estimator 
design) to the PSD SN of the continuous-time measurement 
noise (derived from the ASD plot). Substituting (62) into (61) 
shows that the covariance of the integrated error signal (e(k)) 
increases linearly with time in proportion to the PSD SN, as 
is expected for a random walk.

Together, (46), (47), (62), and H = Cz are the conversions 
needed to transform the continuous-time state-space error 
model to its equivalent discrete-time error model as neces-
sary for the EKF design.

ASD VERIFICATION OF THE STATE-SPACE MODEL
The previous sections presented methods that develop con-
tinuous- and discrete-time state-space models to approxi-
mate IMU stochastic errors, as characterized by the AV 
method. If the method that a designer uses is valid, then data 
generated by the discrete-time state-space model should 
result in an ASD plot that closely approximates the ASD plot 
provided by the IMU manufacturer. This section contains an 
example that demonstrates this verification process.

The example starts from the ASD plot of Figure 2. The 
model, parameter selection, and data generation methods 
are as follows:

1) The AV parameters are extracted from the ASD plot 
using the method described in the “Continuous-Time 
State-Space Models” section. The parameters for this 
example are stated in the third row of Table 2 (that is, 
“Manually Tuned Value”).

2) The value of ( / ) .T1 0 05 sB B
1n = = -  by (34), SB =

. /e1 8528 8 m s2 5-  by (39), and . /S e1 9600 8 m sK
2 5= -  

by (25). By (41),

.
.

.
. .S

e
e

1 8528 8
0 00

0 00
1 9600 8z =

-

-
~ ; E

For Az, Bz, and Cz defined in (40), using (48) and (49),

.
    

.
. .Q

e
e

0 9995
0

0
1

1 853 10
0

0
1 960 10and zdU = =

-

-
; ;E E

3) Using (22), the continuous-time measurement noise 
PSD is . / .S e1 089 5 m sN

2 3= -  Using (62), the discrete-
time measurement noise covariance is Q d =h

. / .e1 089 3 m s2 4-  
4) Starting from an initial condition of zero, the state 

vector ( )x kzv  is propagated using (44), and the IMU 
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Discussion of (62)

Equation (62) may appear to be counterintuitive. Why would 

the discrete-time measurement variance Q dh  decrease as 

the sample period T increases? This phenomenon has a long 

history that can be understood from different perspectives.

SENSOR MODEL

The general assumption is that a discrete-time measurement 

is obtained as the mean of the continuous-time quantity within 

the sample interval:

 ( ) ( ) ( )u k T u d1
t

t

k

k 1
x h x x= + ~

+
u ^ h#  (S25)

 ( ) ( ) ( )u k u k T d1
t

t

k

k 1
h x x= + ~

+
u r #  (S26)

 ( ) ( ) ( )u k u k kh= +u r  (S27)

where the discrete-time measurement noise is

 ( ) ( ) .k T d1
t

t

k

k 1
h h x x= ~

+#  (S28)

If ( )h x~  is white, then its covariance function is 

( ) ( ) ( ),E SNG Hh g h x d g x= -~ ~  where d denotes the Dirac delta 

function and SN is the power spectral density (PSD). Therefore, 

the covariance of ( )kh  is computed as
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Q k T S

1 1

1

1

1

1  

t

t

t

t

t

t

t

t

N
t

t

t

t

N
t

t

N

2

2

2

d

k

k

k

k

k

k

k

k

k

k

k

k

k

k

d

1 1

11

11

1

h h

h x x h g g

h x h g g x

d g x g x

x

=

=

=

= -

=

=

h

~ ~

~ ~

h

+ +

++

++

+

c cm m# #

##

##

#

 

(S29)

which is the same as (62).

ANGLE INCREMENTS

From (S25), the discrete-time samples from the inertial mea-

surement unit (IMU) may be presented (that is, scaled) as ei-

ther an angular rate (or acceleration) measurement u(k) or an 

angle (or velocity) increment ( ) ( )k u k TD =  over the time incre-

ment of length T. The analysis of (56)–(62) presented the IMU 

white-noise conversion from continuous to discrete time for the 

first case: IMU angular rate (or acceleration) outputs, which re-

sulted in (62). This section considers an analysis for the case 

where IMU outputs angle (or velocity) increments.

The discrete-time model equivalent to (51) is

 ( ) ( ) ( ) .x k x k k1v v D+ = +  (S30)

The discrete-time model equivalent to (52) is

 ( ) ( ) ( ) .x k x k k1v v D+ = +t t u  (S31)

Scaling both sides of (58) by T yields the discrete-time mea-

surement model

 ( ) ( ) ( )k k khD D= + D
u  (S32)

with white measurement noise ( ) ~ ( , ) .k N Q0h hD D  By the defini-

tion of ( )kD  in the previous paragraph, ,Q T Q2
d=h hD  where Q dh  

is defined in (45). The error signal ( ) ( ) ( )e k x k x kv v= - t  has the 

time-propagation model

 ( ) ( ) ( )e k e k k1 h+ = - D  (S33)

which is a discrete-time random walk process. The discrete-

time propagation of the covariance of e(k) driven by ( )khD  is

 ( ) ( )  .P k P k Q k1 0for anye e $+ = + hD  (S34)

Due to the assumption that the initial covariance of e(k) is 

zero, (S34) simplifies to

 ( ) .P k kQe = hD  (S35)

Because the continuous and discrete-time models are 

equivalent, their covariance must be the same at the discrete 

sample times. Equating (55) to (S35) yields

( ) ( )P t P k

S kT kQ
e e

N

t kT =

= hD

=

which provides

 Q S TN=hD  (S36)

which is equivalent to (62) because .Q T Q2
d=h hD

The fact that the PSD SN must be equal to Q ThD  is dis-

cussed in [S31, Example 3.20], which attributes that example 

to Kalman in [S32]. The example discusses continuous-time 

white noise as the limit of discrete-time white noise as T ap-

proaches zero.

UNIT ANALYSIS

Consider the units of SN, ,QhD  and .Q dh

• The symbol SN represents the PSD of ( ),tzh  which 

has units of ( / ) ( )deg degs Hz s2 2=  for gyros and 

/m s m sHz2 2 2 3=^ ^h h  for accelerometers.

• The symbol Q dh  represents the covariance of ( )kh , which 

has units of ( / )deg s 2  for gyros and /m s2 2^ h  for acceler-

ometers.

• The symbol QhD  represents the covariance of ( ),khD  

which has units of ( )deg 2  for gyros and /m s 2^ h  for accel-

erometers.

Note that all these units work out consistently in (62) and 

(S36). Equation (62) is used to compute the covariance of the 

discrete-time white-noise covariance Q dh  (which is needed 

for the design of the state estimator) from the continuous-time 

PSD SN (which is extracted from the Allan standard deviation).
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error z(k) is computed using (45). The data frequency 
is 100 Hz so that T = 0.01 s. For simulation purpose, 
L 107=  data samples (or 105 s) were generated.

5) Figure 9 shows the ASD plot for the simulated data as 
the red dashed curve. The blue “x”s show the ASD 
curve for the IMU data, which is the same as the one 
shown in Figures 2 and 8. The green curve is the ASD 
for the analytic model computed by (42), which is the 
same as the one shown in Figure 8.

The close match between the green and red curves veri-
fies the continuous- to discrete-time state-space model 
transformation. The closeness of the fit between those two 
curves and the actual ASD plot depends on the choice of 
the structure and parameters of the continuous-time state-
space model.

DISCUSSION OF ISSUES AND TRADEOFFS
The previous sections presented an example approach to 
extract a discrete-time state-space model to approximate 
the IMU error characteristics, as quantified by an ASD 
graph. There is no single correct method. Here we discuss 
various related issues and tradeoffs.

User-Acquired Data
When the manufacturer does not provide an ASD plot (or 
provides information that the designer considers insufficient), 
the designer may contemplate acquiring his or her own 
data to construct the ASD plots. This data acquisition pro-
cess should be carefully designed after considering the 
appropriate technical specifications [28], [29].

The sensor model in (3) shows that the sensor reading is 
a function of deterministic parameters, stochastic errors, 
and the actual signal u(t). The ASD plot is only intended to 
characterize the stochastic errors z(t). The data acquisition 
setup to acquire data to produce the ASD of the instru-
ment must isolate the IMU from the environment well 

enough that the contributions to the measurement uu  from 
u are negligible. Under the best circumstances, this is done 
on the lowest subterranean floor of a building, with the 
instrument attached to a heavy mass on a vibration isola-
tion system. Less-than-optimal results can be expected for 
an instrument placed on a desk in an office on a higher 
floor due to motion of the building or vibrations in the 
floor, for example.

Optimization-Based Parameter Selection  
for a Given Model
Once the designer selects a model structure, it is possible to 
define an optimization problem to select the model param-
eters (see [28, Sec. 12.11.4.1.2]).

For example, given the state-space model structure 
described in the “Cumulative Error Model: N, B, K” section, 
the ASD model corresponding to (42) is

( ) S S T T e e S1 2 3 4 3z
N B B B T T K2

2 2
B Bv x

x x x
x= + - - + +

x x- -^ h; E

which can be written using the (positive) parameter vector 
[ ]S S S TN B K Bi =v  as

 ( ; ) .e e1 2 3 4 3z
2 1 2 4

2
4 2 3

4 4v x i
x
i

x
i i

x
i i x

= + - - + +i
x

i
x- -v ^ h8 B  (63)

A cost function such as

 ( ) ( ) ( ; )C wi
i

L

u i z i
1

2 2 2
i v x v x i= -

=

v t^ h/  (64)

can be optimized over positive values of .iv  The cost ( )C iv  is 
computed using known values of the ( )u i

2v xt  for , , /i L1 2f=  
as plotted in the ASD plot and the weights

( )
w 1

i
u i

2 2v v x
=

t6 @

where ( )u i
2 2v v xt6 @ is the variance of the computed ( ),u i

2v xt  
approximated as [50]

( ) ( )2u i u i
2 2 2v v x v v x=t t^ h6 6@ @

with ( )u iv v xt6 @ defined in (15). The functional form of ( ; )z
2v x iv  

in (63) is linear in three parameters and only nonlinear in 
one. Therefore, the nonlinear search is only over .4i  For each 
value of ,4i  the other optimal parameter values can be 
explicitly computed.

The results of performing this optimization are shown 
in the fourth row of Table 2. Note that the optimization-
based approach decreased the size of B, which can be inter-
preted as the bias-instability errors being less important 
than thought by the designer who performed the manual 
tuning. This might motivate the designer to study whether 
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FIGURE 9 The Allan standard deviation (ASD) plot for IMU data, 
model defined by (42), and simulated data as described in the 
“ASD Verification of the State-Space Model” section.
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the two-state N, B, K model actually provides performance 
improvement under application conditions relative to the 
one-state N, K model. The engineering art is to select the 
appropriate model structure that enables the state estima-
tor to calibrate the IMU sufficiently well to achieve a speci-
fied performance given the implementation tradeoffs for a 
particular application.

A few words of caution are appropriate regarding the 
interpretation of such optimization-based approaches to 
parameter selection. Note that “optimization based” is not 
necessarily “optimal.” This approach yields the parameter 
vector that minimizes a cost function for a given model 
structure and choice of weights. Different cost functions, 
weights, or a different model will yield different “opti-
mized” model parameters. Also, many designers view the 
IMU in their application as not quite as good as the IMU 
that the manufacturer specified. Therefore, their preference 
is to select the IMU stochastic error model to slightly over-
bound the specified AV plot rather than to optimally match 
that curve.

Observability: Where Is the Bias?
It is often the case that one of the deterministic errors 
accounted for in (3) is a constant unknown bias b. For clar-
ity of the discussion in this section, if all other determinis-
tic errors are assumed to be zero, then (3) has the form

 ( ) ( ) ( ).u t u t b z t= + +u  (65)

The detrending process [mentioned before (12) in reference 
to the computation of the AV], estimates and removes a bias 
from the specific set of data used to create the ASD plot. 
Over a set of experiments, the variance of this “turn-on 
bias” could be determined to have the value .Pb0  Because 
the IMU turn-on bias may change from one run to the next, 
the unknown portion is considered as a constant bias b 
with the differential equation

 ( )b t 0=o  (66)

with the initial covariance ( )P P0b b0=  [3], [9], [55].
Nonetheless, the ASD plot may still dictate the inclusion 

of the state zK  with model

 ( ) ( )z t tK K~=o  (67)

with the PSD for ( )tK~  being S KK
2=  and initial covariance 

( ) ( ( )) .covP z0 0 0z kK = =

Including both b and zK  in the augmented state vector is 
problematic, as can be concluded from a simple observabil-
ity analysis. Assume for a moment the ideal situation where 
the signal ( ) ( ) ( )y t u t u t= -u  is available. Also, assume that 

( ) ( )z t z tK=  (accounting for additional stochastic errors 
would not improve the observability of b and zK), then (65)–
(67) are equivalent to

 
( )
( )

( )
( )

b t
z t

b t
z t

0
0

0
0K K

=
o

o
= ; =G E G (68)

 ( )
( )
( )y t

b t
z t1 1

K
= 6 =@ G (69)

where the noise ( )tK~  has been dropped because it is not 
relevant to an observability analysis. For this system, the 
observability matrix is

 
1
0

1
0O = ; E  (70)

which has a rank equal to one. Further analysis shows that 
it is only possible to estimate the sum ( ) ( )b t z tK+  (see [3, 
Example 3.19]). Alternative modeling approaches are dis-
cussed in the “Tradeoffs in State Augmentation” section.

Computational Impact of Augmented States
The augmented state vector, as defined in (5), has dimen-
sion .n n n nx v d z= + +  The following discussion considers 
the dimension of xv

nv0!v  as fixed and known, typically 
n 9v !  [see (4)].

For IMU state augmentation, the designer must choose 
the definition and model structure for the deterministic 
and stochast ic IMU error state vectors xd

nd0!v  and 
.xz

nz0!v  Because there are three gyros and three acceler-
ometers in the IMU, if ng  states are augmented per gyro 
and na  states per accelerometer, then ( ) ( ) .n n n n3d z a g+ = +  
Therefore, ( ).n n n n3x v a g= + +  Increasing the number of 
augmented states allows for a higher fidelity model, but it 
comes with tradeoffs. The computational load of the EKF 
increases in proportion to nx

3  [that is, ( )]O nx
3  (see [5], [9], and 

[55]). Also, the desired increase in performance expected to 
be gained with the additional computations may not be 
realized. For example, as the number of augmented states is 
increased, observability issues may arise. Although it is 
clear that unobservable states increase the computational 
load without providing any performance improvement, it 
may be less clear that weakly observable states may cause 
the implementation to be less robust to unmodeled dynam-
ics and nonlinearities.

For IMU state augmentation, the designer must choose the definition and 

model structure for the deterministic and stochastic IMU error state vectors.
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Tradeoffs in State Augmentation
In sensor fusion applications, the IMU measurements are 
not processed in the state estimation (for example, the KF) 
measurement update. Instead, they are treated as known 
inputs and considered during the time propagation of the 
state vector [see (2)].

To illustrate the tradeoffs related to state augmentation 
for modeling stochastic IMU errors in such a filtering con-
text, the differential equation for velocity shall be consid-
ered. In a navigation frame mechanization, this velocity 
differential equation is given by (see [3, Sec. 11.24]).

 .Cv f v g2eb
n

b
n

ib
b

ie
n

en
n

eb
n

l
n#~ ~= - + +vo v v v v v^ h  (71)

In this notation, veb
n 30!v  is the velocity of the platform 

(that is, body frame) with respect to Earth and represented 
in navigation frame coordinates, Cb

n  is the direction cosine 
matrix describing the rotation from body frame to naviga-
tion frame, ie

n~v  is the Earth’s rotation rate, en
n~v  is the plat-

form’s transport rate, and gl
nv  is the local gravity vector. The 

axes of the navigation frame point in the north, east, and 
down directions. The axes of the body frame usually coin-
cide with the sensitive axes of the IMU. The quantity f ib

bv  is 
the specific force vector, which is defined as the difference 
between platform acceleration and local gravity vectors. The 
accelerometer triad contained in the IMU provides mea-
surements f ib

bvu  of this specific force, which, assuming no 
deterministic errors, relates to the true specific force via the 
stochastic error vector ;za

30!v

 .f f zib
b

ib
b

a= +vu v v  (72)

Each scalar component of the vector zav  is modeled as in 
(6) and (7). Substituting (72) into (71) yields

 .v f v g z2C Ceb
n

b
n

ib
b

ie
n

en
n

eb
n

l
n

b
n

a#~ ~= - + + -vo vu v v v v v^ h  (73)

Consider the following two accelerometer error model-
ing scenarios:

1) If only velocity random walk errors would be consid-
ered (see the “Random Walk Errors: Angle and Veloc-
ity: ( )z tN ” section), the KF state vector would not need 
to be augmented. The velocity random walk simply 
ends up as process noise in the KF system model, 
without the need for additional states. This model 
could be accurate for small time durations (x  smaller 
than a few seconds for the IMU in Figure 2), but 
would largely ignore the other sensor characteristics 

described by the corresponding ASD plot for larger .x  
It would not allow the sensor fusion algorithm to cali-
brate the IMU (for example, estimate and remove a 
bias) on the fly.

2) Using the first-order Gauss–Markov error model (or 
the acceleration random walk model) would add one 
accelerometer “bias state” per axis. In this case, the 
IMU stochastic error model can match the ASD plot 
out to several tens of seconds. The estimated bias 
state allows for removal of the effect of the sensor 
bias (that is, calibration).

For the second case, both options (that is, the first-order 
Gauss–Markov error model or the acceleration random 
walk model) have their pros and cons. With an acceleration 
random walk model, the variance of the bias state grows 
linearly with time (that is, without bound) during time 
intervals when the bias is not observable (see [3, Sec. 
4.6.3.2]). The physical inertial sensor bias is, of course, 
bounded. When the bias becomes observable through 
aiding measurement information and vehicle motion, the 
unrealistic growth of the bias variance may cause the esti-
mator gain to be unreasonably large. With the Gauss–
Markov model, the variance of the bias state stays bounded, 
even during time intervals when the bias state is not 
observable (see [3, Sec. 4.102]). However, when the bias is 
unobservable, the bias state estimate itself tends to zero 
during time propagation (that is, the previously estimated 
quantity is slowly forgotten). Whether this is relevant or 
not depends on the duration of time without observability 
of the bias state and Gauss–Markov model correlation time.

With the Gauss–Markov choice, (20) reduces to

.z z za N G= +v v v

The augmented system model is given by

C Cv
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with the velocity random walk (that is, N~v ) and the driving 
noise of the Gauss–Markov model (that is, B~v ) constituting 
the process noise.

This state augmentation allows for a calibration of the 
inertial sensors during the mission, which improves the 
inertial navigation performance, especially when no 
aiding information is available. The time-correlated nature 
of the inertial sensor biases is respected, and the sensor 
characteristics represented in the corresponding ASD plot 
are modeled to the extent (that is, cluster duration) where 

In sensor fusion applications, the IMU measurements are not processed  

in the state estimation measurement update.
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they are meaningful for the application. For example, typi-
cally in a GNSS/INS system, GNSS measurements are pro-
cessed with a rate of approximately 1 Hz. This means that 
the time interval over which the INS propagates the state, 
without aiding corrections, is normally limited to 1 s. 
Using inertial sensors up to tactical grade, an inertial-only 
navigation during GNSS outages is meaningful for only a 
few minutes at most because the inertial navigation errors 
grow with time relatively quickly. Therefore, from the per-
spective of the filter design, it is not required to model 
inertial sensor characteristics that become dominant in the 
ASD plot for time intervals of several hundreds or thou-
sands of seconds.

Although the advantages of such an augmentation have 
just been outlined, as discussed earlier, the augmentation 
with additional states increases the computational load. 
Before augmentation with inertial sensor biases, a tightly 
coupled GNSS/INS filter would typically require 11 states: 
three position error states, three velocity error states, three 
attitude error states, and two states for the receiver clock 
error model. For multi-GNSS implementations, additional 
clock model states are required per constellation. The aug-
mentation with accelerometer and gyroscope bias states 
(either zGv  or )zKv  adds six states, which increases the com-
putational load by roughly a factor of four. An augmenta-
tion with two states per instrument (for example, both zGv  
and )zKv  adds 12 states, which increases the computational 
load by roughly a factor of 10.

Deterministic Errors
So far (for stochastic error modeling), only the ASD plots 
provided by the sensor manufacturer have been consid-
ered. However, when designing a sensor fusion filter, addi-
tional “deterministic” aspects of the IMU may need to be 
addressed. Inertial sensor manufacturers usually provide a 
variety of specifications in addition to the ASD plots, which 
are addressed briefly here.

Misalignment
The IMU axis-to-axis misalignment describes the nonor-
thogonality of the sensitive axes of the sensors. Some man-
ufacturers provide a typical standard deviation for the 
angle by which two sensor axes may deviate from an ideal 
90°. With sufficient dynamics and inertial sensor accuracy, 
misalignment could be estimated in the navigation filter, 
adding nine states defined as follows. The IMU sensitive 
axes span the body frame. When considering misalign-
ment, it has to be defined how this is to be understood. One 
possible approach is to define the sensitive axis of the 
z-accelerometer as z-axis of the body frame. The nonorthog-
onality of the y-accelerometer axis to the z-accelerometer 
axis can be described with a single angle. The x-axis is 
defined as the unique vector that is orthogonal to the y-z 
plane so that the body frame is defined completely. The 
description of the misalignment of x-accelerometer, and 

x, y, and z-gyroscopes with respect to this body frame 
requires two angles for each sensor. For three sensors, this 
requires up to nine states total. An IMU axis-to-platform 
frame misalignment (which is to be understood as a simple 
rotation of the body frame with respect to the IMU frame 
that it is supposed to be aligned with) has no negative 
impact on inertial navigation performance.

Nonlinearity
This term refers to the deviation of the sensor input–output 
curve from a straight line. A line that is fit to the input–
output curve and the maximum deviation of the input–
output curve with respect to this fitted line, divided by the 
sensor measurement range (full scale), is defined as nonlin-
earity. The nonlinearity usually cannot be estimated in the 
navigation filter.

Scale Factor
In the definition of nonlinearity, the line would ideally 
have a slope of one. The deviation of the actual slope from 
one is the scale factor error (often stated in parts per mil-
lion). Scale factor error could potentially be estimated in 
the navigation filter, adding six states: three for the gyro-
scopes and three for the accelerometers. However, as for 
the misalignment, the linear scale factor error is often dif-
ficult to observe. Without vehicle motion, both scale factor 
and misalignment are indistinguishable from biases.

Linear Acceleration Effect
Microelectromechanical systems gyroscopes show an 
acceleration-dependent bias error. Usually, a navigation 
filter does not consider this type of error explicitly.

Vibration Rectification Error
This is especially relevant to accelerometers that exhibit a 
vibration-dependent bias. Possible reasons for such a vibra-
tion-dependent bias include nonlinearity and aliasing. 
Usually, a navigation filter does not consider this type of 
error explicitly.

This brief discussion of deterministic sensor errors 
states asserts that some of them (for example, nonlinearity) 
cannot be accounted for explicitly in the system model of 
the state estimator. Whether the augmentation of states for 
scale factor and misaligment calibration is worthwhile is 
application dependent. First, not all of them are observable 
individually. Second, the increase in computational com-
plexity could be prohibitive.  Furthermore, the IMU is often 
exposed to vibrations.  Vibrations are micromovements of 
the sensor, which may not be resolved correctly by the IMU 
and INS strapdown algorithm. For example, the frequency 
of some of the vibrations may exceed the Nyquist frequency 
of the sensor, causing aliasing to occur. These errors might 
be modeled as additional time-correlated noise. However 
as the vibrational model for each sensor would require 
at least a second-order Gauss–Markov model, such an 
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approach would require 12 additional states. Instead of 
explicitly considering vibration-induced noise, misalign-
ment, and linear and nonlinear scale factor errors, an often 
used approach is to increase the navigation filter process 
noise beyond the levels that have been obtained from an 
analysis of the ASD plot.

IMU Manufacturer Terminology
The following sections briefly discuss various additional 
terms that appear on some manufacturer data sheets.

Bias In-Run Stability
The bias in-run stability is the component of the total 
sensor bias that varies with time in a correlated fashion. 
This correlated temporal variation is typically modeled as 
a first-order Gauss–Markov process, that is, ( ).z kG  The bias 
in-run stability (or in-run bias) is described on IMU data 
sheets with units that correspond to the ASD. In accor-
dance with IEEE specifications [28], [30], this value corre-
sponds to B at the minimum of the ASD plot, as discussed 
relative to (32). However, the cluster time corresponding to 
this minimum value is typically not provided by sensor 
manufacturers. It can be extracted from the ASD plot, if 
provided; otherwise, the correlation time must be selected 
and tuned by the designer.

Turn-on Bias
The turn-on bias (also referred to as the start-up, run-to-run, 
or repeatability bias) is an offset in the sensor readings that 
potentially changes each time the sensor is switched on. 
The total inertial sensor bias can be seen as the sum of this 
turn-on bias and a time-varying contribution (that is, bias 
in-run stability). The turn-on bias is relevant for initializa-
tion of the variance of the inertial sensor bias states in the 
navigation filter. Using the state vector defined relative to 
(48) as an example, the initial covariance of the augmented 
states ( )z 0G  and ( )z 0K  should be selected to add up to the 
manufacturer-specified variance of the turn-on bias. As 
explained in the “Observability: Where Is the Bias?” sec-
tion, the turn-on bias cannot be inferred from an ASD plot.

Angle/Velocity Random Walk
The random walk describes the impact of the sensor’s inher-
ent white noise when integrating. The unit is / h°  for gyro-
scopes and //( ) hm s  for accelerometers. An angular 
random walk of / h°a  indicates that after integrating 
angular rate measurements for H hours, an angle error stan-
dard deviation of H ca  will result due to the sensor’s inher-
ent white noise. The random walk contributes to the process 
noise in the navigation filter system model [for example, see 
(74)]. The angle/velocity random walk parameter is the 
square root of the PSD of the sensor’s inherent white noise, 
which is denoted by N throughout this article. In some data 
sheets, the angle/velocity random walk is referred to as the 
noise density, typically provided with the unit / /( )° hh H  for 

gyroscopes and / /( )m s Hz2  for accelerometers. The noise 
density is an alternative representation to the random walk 
parameter N. It is possible to convert between both represen-
tations of the sensor’s inherent white noise. For example,

/ / / .
Hz

m s
s

m s
s

m s
h

m s60
2

2= = =

AVAILABLE SOFTWARE PACKAGE
An open source Matlab software package is available at 
https://github.com/jaffarrell/AV-Matlab-SW. The software 
has two components. The first component completes the fol-
lowing: 1) Given a continuous-time error model, it computes 
an equivalent discrete-time state-space model. 2) Given that 
discrete-time model, a simulation produces a stochastic 
error sequence ( )z z tk k=  where t kTk =  for , , .k L1 f=  
3) Given a sequence of stochastic errors ,zk k

L
1=" ,  it computes 

the AV (that is, ( ))u
2v x  and plots the ASD [that is, ( ) ].u

2v x  
The second component implements the optimization-based 
approach described in (63) and (64) to fit the parameters of 
the NBK continuous-time state-space model described in 
(40)–(42) to a given set of AV data. Together, these two com-
ponents enable a complete design cycle. Inclusion of the 
optimization-based approach is for completeness, it is not 
meant to imply that it is the recommended approach for 
selecting the state-space stochastic error model.

This software release includes a dataset for the demon-
stration example herein. The user must adapt that approach 
and software to the model appropriate for their instrument.

CONCLUSION
This article’s main purpose was to present a tutorial on the 
process that starts from an instrument’s ASD plot (or its 
derived parameters) and constructs a state-space IMU error 
model suitable for real-time INS error state estimation and 
IMU calibration using data fusion methods such as the KF, 
EKF, UKF, PF, or MAP. An example model construction and 
verification method was included. We do not claim that 
this approach is unique or optimal. It is representative of 
industry-standard methods.

In addition, this tutorial included an extensive discussion 
of the issues and tradeoffs that a designer should consider, 
including performance, computational load, observability, 
and extent of the cluster time x  that is relevant to a given 
application.

Finally, the manufacturer provided ASD plot or param-
eters should be considered as a starting point. It will dictate 
the dominant forms of error and reasonable values for the 
error model’s parameters. Minor tuning relative to those 
reasonable parameters will normally be required to accom-
modate the particular IMU that is available and the error 
terms that were ignored or neglected due to observability 
or computational reasons. A considerable tuning might be 
required in case the IMU is exposed to vibrations contain-
ing frequencies exceeding the Nyquist frequency.
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