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Abstract: This work focuses on the challenges associated with autonomous robot guidance, navi-
gation, and control in multi-robot systems. This study provides an affordable solution by utilizing
a group of small unmanned ground vehicles and quadrotors that collaborate on monitoring and
inspection missions. The proposed system utilizes a potential fields path planning algorithm to allow
a robot to track a moving target while avoiding obstacles in a dynamic environment. To achieve
the required performance and provide robust tracking against wind disturbances, a backstepping
controller is used to solve the essential stability problem and ensure that each robot follows the
specified path asymptotically. Furthermore, the performance is also compared with a proportional-
integral-derivative (PID) controller to ensure the superiority of the control system. The system
combines a low-cost inertial measurement unit (IMU), a GNSS receiver, and a barometer for UAVs to
generate a navigation solution (position, velocity, and attitude estimations), which is then used in
the guidance and control algorithms. A similar solution is used for UGVs by integrating the IMU,
a GNSS receiver, and encoders. Non-linear complementary filters integrate the measurements in
the navigation system to produce high bandwidth estimates of the state of each robotic platform.
Experimental results of several scenarios are discussed to prove the effectiveness of the approach.

Keywords: backstepping controller; complementary filters; motion planner; navigation system;
ground robot; aerial robot; inspection and monitoring

1. Introduction

Today, unmanned vehicles (UVs) are used to carry out a number of tasks in order to
automate processes, complete tasks faster and more accurately, and ensure the safety of
humans [1]. Moreover, UVs are often used in smart cities [2,3]. Due to this, researchers
have developed ground and aerial robots that were designed to operate under uncertain
conditions. Often, it is a burden for a single robot to accomplish a task effectively [4].
For this reason, a group of small, inexpensive robots can work together in a network, each
with its own capabilities, to accomplish a common goal [5].

The applications of robotic systems in clean energy systems are continuously devel-
oping since there is a global tendency to shift to renewable energy sources such as solar,
wind, and hydro-energy systems [6]. However, for these systems to perform well, they
must be inspected and monitored on a regular basis [7]. For instance, in [8], a drone with
thermal imaging is used for solar panels defect detection. In addition, a climbing robot was
utilized to inspect and maintain a solar power plant [9]. To maximize the efficiency of such
operations, several studies used multi-robot networks to develop technology to analyze the
normal operation and failure of solar modules by attaching optical and thermal infrared
sensors to unmanned aerial vehicles (UAVs) [10,11]. A similar study used multi-drone
equipped with vision and LiDAR sensors for global inspection, guiding climbing robots in
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analyzing structure parts using non-destructive inspection methods and locally repairing
smaller defects in wind turbines [12]. With the advancement of IoT technology, the use
of multi-robot systems to collect data from a network of wireless sensors has received
increased attention and has grown dramatically in applications such as agriculture [4],
railway track monitoring [13], and search and rescue [14].

To achieve a trusted level of autonomy in multi-robot system operations, it should
include the following major components: guidance, navigation, and control [15]. The guid-
ance system is in charge of providing the robot with a planned trajectory that allows it to
travel from its starting point to the desired location while avoiding obstacles and tracking a
target. In a multi-robot system, each agent must cooperate and coordinate with the others in
order to achieve real-time cooperative navigation and free-collision path planning [5,16,17].
The navigation system is used to determine the location, orientation, and velocities of each
robot in the multi-robot system at any desired time [18–20]. The control system provides
the correct forces or torques to achieve the guidance goals. Backstepping (BS), sliding mode
control (SMC), feedback linearization, PID, optimal and robust control, learning-based
control, and other techniques were used to solve the stabilization control problem and
trajectory control for a quadrotor and a mobile robot [21,22]. Backstepping control is con-
sidered one of the well-developed nonlinear control approaches that can stabilize dynamic
systems while handling uncertainties to achieve the required performance [23,24].

In recent years, swarming robot dynamics and control have been active research
topics. The difficulty of validating these algorithms in actual tests has been a barrier to
more frequent and widespread use. Many researchers focused their efforts on developing
a stable guidance, navigation and control (GNC) system to address this issue. In [25],
robust navigation algorithms for multi-agent fixed-wing aircraft are presented. These
algorithms are based on adaptive moving mesh partial differential equations controlled
by the free energy heat flow equation, and they are experimentally validated using LQR
controllers and multi-scale moving point guidance. A similar project used a PID controller
and a waypoint-based guidance system to evaluate an INS/GNSS navigation system [26].
An affordable GNC solution with a visual-based navigation system was tested on a group
of small unmanned ground vehicles and quadrotors to achieve a common goal [27]. In a
practical marine environment, a hybrid framework for guidance and navigation of swarms
of unmanned surface vehicles (USVs) that combines two layers of offline planning and
online planning was applied [28].

This work developed a complete system architecture for a guidance, navigation,
and control solution to enable small UAVs and UGVs in monitoring and inspection ap-
plications. To solve the essential stability problem and ensure that each robot follows the
specified path asymptotically, a backstepping controller is used and discussed in detail.
A guidance algorithm for generating a flight trajectory based on a potential field method
is also described, allowing a robot to track a moving target and avoid obstacles in a dy-
namic environment. To generate a navigation solution (position, velocity, and attitude
(orientation) estimations), the system combines a low-cost inertial measurement unit (IMU),
a GNSS receiver, and a barometer for UAVs, which is then used in the guidance and control
algorithms. For UGVs, a similar solution is used by integrating IMU, a GNSS receiver,
and encoders. The measurements in the navigation system are integrated by non-linear
complementary filters that produce high-bandwidth estimates of the state of each robotic
platform. What distinguishes the developed system is its direct implementation of its
algorithms in embedded systems with minimal programming cost. This work provides
users with a reliable and viable GNC structure, which is supported by several practical
experiments conducted both internally and externally for life applications. The developed
GNC system was tested using a true reference motion capture system to demonstrate the
efficiency of the integrated system in terms of stability, accuracy, and maneuverability.
Several outdoor tasks were carried out to evaluate the monitoring and inspection process,
rather than a single robot. These operations demonstrate the navigation system’s ability to
precisely locate the aerial and ground robots.
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The current study is structured as follows: Section 2 provides an overview of the
dynamic model of each robot. Section 3 discusses the adopted backstepping controller for
a quadrotor and a ground robot. A motion planning algorithm is developed and discussed
in Section 4. The navigation system for each robotic platform is adopted for accurate state
estimations. Section 6 illustrates indoor and outdoor experiments of multi-robot missions.
Furthermore, this section discusses the experimental results. Finally, concluding remarks
and future research directions are summarized in Section 7.

2. System Modeling and Description

The kinematics and dynamics models of the quadrotor and wheeled robot, in addition
to their relevance in the design of robust controllers, can be helpful in understanding the
stability nature and operations under uncertain conditions.

2.1. Quadrotor Model

There has been much explanation and study of the mathematical model of the quadro-
tor in the literature [24,29,30], and we will summarize the general model here. It is estab-
lished through:

v̇vv =
1
m
(−TTT + fff d + fff w) + gRRRTuuu3 −ωωω× vvv

ṗpp = RRRvvv

ω̇ωω = JJJ−1[τττ − S(ω)JJJωωω]

ṘRR = RRRS(ωωω)

(1)

As shown in Figure 1, the vectors of linear velocity and position are determined
by vvv = [u, v, w]T and ppp = [x, y, z]T , respectively. Moreover, ωωω = [ρ, q, r]T is the angular
velocity vector. Any vector zzz in body frame BBB can be translated into inertial frame III
by a rotation matrix RRR, and any vector zzz can be represented by the skew symmetric
matrix S(zzz). The gravity constant g is represented in inertial frame by the vector uuu3 =
[0, 0, 1]T , and the moment of inertia is given by the matrix JJJ and the mass by m. The terms
ωωω× vvv, fff d, and fff w in Equation (1) are the gyroscopic effects, the drag forces, and the wind
disturbances, respectively. Furthermore, the thrust force TTT and moments τττ on each body
axis are expressed as follows:

TTT =
[
0 0 ct(ω2

m1 + ω2
m2 + ω2

m3 + ω2
m4)
]T

τττ =

dct(−ω2
m1 + ω2

m2 + ω2
m3 −ω2

m4)
dct(ω2

m1 + ω2
m2 −ω2

m3 −ω2
m4)

cq(ω2
m1 −ω2

m2 + ω2
m3 −ω2

m4)


+

Jmq π
30 (−ωm1 + ωm2 −ωm3 + ωm4)

Jm p π
30 (ωm1 −ωm2 + ωm3 −ωm4)

0


(2)

The torque and thrust coefficients of the rotor (motor+propeller) are cq and ct, respec-
tively; Jm is the rotor’s inertia and d is the distance between the center of the rotor to the
quadrotor’s center of mass.
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Figure 1. Multi-robot coordinates and control structure. Subscript “d” means “desired”.

2.2. Wheeled Robot Model

In the literature, the kinematic model of two-wheeled differential-drive robots is
subjected to non-holonomic constraints, assuming that the wheels do not skid [24,31].
In this case, the robot motion is described as follows:

v = RRR(ψ)
[
ẋ ẏ ψ̇

]T
= r

ωR + ωL
2

ω = r
ωR −ωL

d

RRR(ψ) =

 cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1


(3)

In the above equation, ψ and ω represent the angle of rotation and angular velocity
around the robot’s z-axis, respectively, and v is the linear velocity; r and d are the radius
of the robot’s wheel and the distance between the robot’s rear wheels, respectively; ωR
and ωL are the angular speeds of the right and the left wheels, respectively. In Figure 1,
the body frame of the robot moves relative to an inertial frame O. Therefore, the kinematic
equations in Cartesian coordinates are given as follows:

ẋ = v cos ψ

ẏ = v sin ψ

ψ̇ = ω

(4)
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3. Backstepping Controller
3.1. Quadrotor Control

The backstepping (BS) controller is used in this work because of its capacity to solve
the quadrotor’s essential stability problem. Most crucially, the control system ensures that
the quadrotor’s position follows the specified path asymptotically [23,24]. The BS control
system integrates both translation and rotation dynamics within a single control.

The adopted control law generates one thrust T and three torques τττ = [τφ, τθ , τψ]T and
a timing law for the path parameter γ(t) that guarantees convergence of the quadrotor’s
position P(t) to the desired path Pd(γ), which is a function of a virtual arc γ. The con-
trol structures for the thrust and the torque vector are given by Equations (5) and (6),
respectively:

Td = m||k2
1k2eee2 + k1σ̇(eee1 + guuu3 − p̈̈p̈pd|| = m||tttd||,

Td > 0

rrr3d =
tttd
||tttd||

T = rrrT
3drrr3Td

(5)

where k1 and k2 are positive gains, and m is the mass of the quadrotor; rrr3 is the third column
of the rotation matrix (RRR), and it indicates the direction of the quadrotor’s z body-axis. As a
result, if rrr3 equals the desired thrust direction (rrr3d), the thrust force (TTT) will be equal to the
desired thrust force (TTTd). Based on the desired thrust value (Td) and thrust direction (rrr3d) in
Equation (5), the thrust control law (T) is generated. Furthermore, the torque control law
(τττ(t)) is calculated in Equation (6) according to the angular acceleration (ω̇ωωc). Moreover,
an arbitrary function (ω̇3c) is used to define the dynamics of yaw angle.

ω̇3c =− l2(ω3 −ω3d + l1rrrT
2drrr1) + ω̇3d − l1

d
dt
(rrrT

2drrr1)

ω̇ωωc = S(uuu3)

(
− k4eee4 −RRRTrrr3d + k3S(uuu3)

2(ṘRRTrrr3d

+ RRRTṙrr3d) +
1

mk1
S(uuu3)

2(ṪdRRRTeee2 + TdRRRTėee2)

)
+ ṘRRTRRRdωωωd + RRRTRRRdω̇ωωd + [0 0 ω̇3c]

T

τττ = JJJω̇ωωc + S(ωωω)JJJωωω

(6)

where l1, l2, k3, and k4 are positive gains; rrr1 and rrr2 are the first and second columns of the
rotation matrix (RRR), respectively. The skew symmetric matrix is represented by SSS(.); RRRd and
ωωωd denote the desired rotation matrix and quadrotor’s desired angular speed, respectively.
Based on the BS controller, four error vectors (eee1 to eee4) are defined. Those error vectors and
derivatives are expressed as follows:

eee1 = ppp− pppd(γ), ėee1 = RRRvvv− ṗppd,

ëee1 = − T
m

RRRuuu3 + guuu3 − p̈ppd

eee2 = σ(eee1) +
1
k1

ėee1, ėee2 = σ̇(eee1) +
1
k1

ëee1

eee3 = rrr3 − rrr3d

eee4 = − k3S(uuu3)
2RRRTrrr3d + S(uuu3)(ωωω−RRRTRRRdωωωd)

− Td
mk1

S(uuu3)
2RRRTeee2

(7)

where pppd and vvvd are the desired positions and velocities of the quadrotor, respectively. A
time-dependent position error vector (eee1) can influence the initial position of the vehicle
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significantly. As a result, the control structure is distinguished by the fact that it is not
directly related to the time factor associated with the first error. In other words, thrust
(T) and torque vector (τττ) are not directly linked to (eee1). In addition to the position error,
the other errors are regulated by the saturation function (σ) of (eee1), which allows for
bounded actuation. A detailed discussion of the stability proofs for these control laws can
be found in [23].

It is essential for the control algorithm to keep a well-defined control law to ensure
that the vehicle follows the path. In order to achieve this condition, we have a timing law,
which is obtained by adding the second time-derivative of the path parameter γ:

γ̈ =− kγσ(γ̇− γ̇d) + uuuT
1 RRRT(k2

1k2eee2 + k1σ̇(eee1)− γ̇ppp
′′
d)

p̈ppd = ppp
′′
d γ̇2 + ppp

′
dγ̈

(8)

where ppp
′
d and ppp

′′
d are the first and second partial derivatives of the desired path, respectively.

The control law in Equation (8) drives γ̇ to γ̇d, which is calculated based on the path’s
geometry. Any vector in tangent frame {T} can be represented in inertial frame {I} by the
rotation matrix RRRT at any points where p

′′ 6= 0. For ease of use, most variables, which were
previously defined, are listed in Table 1.

Table 1. Parameters used in backstepping controller of a quadrotor. Subscript “d” means “desired”.

Parameter Description Parameter Description

k1, k2, k3, k4, l1, l2, kγ, Pmax controller gains σ(xxx) Pmax
xxx

1+||xxx|| Saturation function
ppp [x, y, z]T pppd Desired path position as a function of γ
vvv [u, v, w]T ppp′d, ppp′′d First and second partial derivatives of pppd
ωωω [P, q, r]T uuu1, uuu2, uuu3 [1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T

RRR Rotation matrix of Euler angles (φ, θ, ψ) S(xxx) Skew symmetric matrix

3.2. Ground Robot Control

A backstepping controller is adopted to accurately regulate the actuators that drive
the robot from its current position ppp = [x y ψ]T to the desired position pppd = [xd yd ψd]

T .
The aim of the control is to minimize the following error:

εεε = R(ψ)R(ψ)R(ψ)(pdpdpd − ppp) =

 (xd − x) cos ψ + (yd − y) sin ψ
−(xd − x) sin ψ + (yd − y) cos ψ

ψd − ψ

 (9)

The error derivatives after substitutions from Equations (4) and (9) can be simplified
as follows:

ε̇εε =

ωε2 − v + vd cos ε3
−ωε1 + vd sin ε3

ωd −ω

 (10)

As discussed in [24], two control inputs (i.e., vc and ωc) are considered. Hence,
the control law is implemented as follows:[

vc
ωc

]
=

[
k1ε1(

F
vd
) + vd cos ε3

ωd − ( τ
cos ε3

)

]
(11)
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where vd and ωd are the desired linear velocity and angular velocity of the robot, respec-
tively. The variables F and τ are calculated as follows:

F =
vd

k5 + 1
τ =− k1(δ sin ε3 − δv) + ησ

v = η(k3Fε3
1 + k2vdε2

1ε2 + (
k2F2 + k2

5F
v2

d
)ε1)

δ =
vd + k5F

vd

η =
vd

vd + k5F
σ = δ(−k2k5vd − 3k3F)ε3

1 + 2δk2k5vdε2
2ε1

+ k3δ(−2F− 3k5F)ε2
1ε2 + δk2v2

dε2
1 sin ε3

+ δk3(
−F3

v4
d
)ε1 + δk2k5(

−vdF + F2

v3
d

)ε2

(12)

where k1, k2, k3, k4, and k5 are the controller gains.

4. Motion Planning for Multi-Robot System

The purpose of this section is to introduce a new UV motion planning system based
on potential forces. This system helps the robot (i.e., ground and aerial robots) follow a
moving target within a dynamic environment containing obstacles. To achieve the desired
target, an individual trajectory is generated for each robot, which has access to all the state
information in one processor. In Section 3, the proposed control structure for each robot
ensures that the tracking error will converge to zero, where tracking error of the ith robot is
measured as:

eeeti = qqqdi − qqqi (13)

where qqqdi is a vector of the robot desired trajectory, and qqqi is its position with respect the
inertial frame. The robot will continue to move towards its destination as long as there
are no obstacles in its path. Alternately, the robot’s predefined path must be modified
by feeding small variations in its motions. Essentially, the proposed approach generates
a dynamic trajectory that allows the robot to track the target and avoid obstacles by
generating attractive and repulsive potential forces.

4.1. Potential Attractive Force

The attractive force model is defined by the relative position and velocity vectors of
two robots as follows:

fff A = A1(ppp)+A2(vvv)

A1(ppp) = 2kpδpδpδp

A2(vvv) = 2kvδvδvδv

(14)

The attractive force model includes two force components, A1 and A2, as shown in
Figure 2. The first component, A1, propels the robot toward the target, shortening the
distance between them. The second component, A2, keeps the robot moves at the same
velocity as the target. The relative position between the robot and the target is given by δpδpδp,
and the relative velocity is given by δvδvδv. Each force component can be tuned correctly by the
gains kp and kv. Figure 2 illustrates the relationship between the attractive force components
and the relative position and velocity of the robot to the target in a 2-dimensional space.
Normally, this system is applied to a ground robot that is following another robot, and the
concept can also be extended to cover UAVs in the third dimension. The attractive force for
each motion direction (i.e., x, y, and z) can be given as follows:
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fx = 2kpx δx + 2kvx δvx

fy = 2kpy δy + 2kvy δvy

fz = 2kpz δz + 2kvz δvz

(15)

𝒗

𝜹𝒗 = 𝒗𝒕 − 𝒗

Target

Robot

𝑌

𝑋

𝒗𝒕

𝐴1 𝒑
𝐴2 𝒗

𝜹𝒑

Figure 2. Attractive force in 2D space.

4.2. Potential Repulsive Force

When a robot encounters an obstacle, it will also be provided with an extended potential
force to detour and avoid collision. Considering pobs and vobs are the position and the velocity
of an obstacle which can be obtained on-line, then the relative velocity between the robot and
the obstacle is εv = v− vεv = v− vεv = v− vobs, and the relative position is εp = pεp = pεp = pobs − ppp, as shown in Figure 3.
Then, the value of εvεvεv in the direction from the robot to the obstacle is given by:

vRO = εvεvεv
TnnnRO

nnnRO =
εpεpεp

||εpεpεp||
(16)

where nnnRO is a unit vector pointing from the robot to the obstacle. As shown in Figure 3,
in the case where the robot is moving away from the obstacle as vRO ≤ 0, no avoidance
action is needed from the robot. In contrast, if vRO > 0, the robot requires a force to push
it away from the obstacle. As a result, a model is used to generate appropriate repulsive
forces. These forces are computed using the following function:

rrr = rrr1 + rrr2.

rrr1 =
−η

(ρs − ρm)2 (1 +
vRO
amax

)nnnRO

rrr2 =
ηvROvRO⊥

ρsamax(ρs − ρm)2 nnnRO⊥

(17)

It can be seen in Figure 3 that rrr1 is a force in the opposite direction of vROnnnRO, which
keeps the robot away from the obstacle. Moreover, rrr2 is in the same direction of the
perpendicular vector vRO⊥nnnRO⊥ and acts as a steering force. Moreover, η is a positive
constant, ρs is the shortest distance between the center of the robot and the center of the
obstacle, and ρm is the distance that the robot travels before it approaches zero, which is a
function of a maximum deceleration amax and is given as follows:

ρm =
v2

RO
2amax

. (18)
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𝒗

𝝐𝒗 = 𝒗 − 𝒗𝒐𝒃𝒔

Obstacle

Robot

𝑌

𝑋

𝒗𝒐𝒃𝒔

𝑅1

𝑅2

𝝐𝒑

Figure 3. Repulsive force in 2D space.

In order to make the repulsive force model valid for multiple obstacles nobs, the fol-
lowing relation is established:

rrr =
nobs

∑
n=1

rrri. (19)

Using Equations (14) and (17), the robot is subjected to an overall virtual force equal
to the sum of the calculated attractive and repulsive forces as follows:

fff tot = fff + rrr. (20)

5. Navigation System and State Estimations

In real-time platforms, an estimation system is essential to compensate for noise and
biases in sensors, and, in addition, to provide accurate attitude, position, and velocity informa-
tion to the aerial and ground robots. One of the navigation solutions can be implemented with
a typical inertial measurement unit (IMU) and a low-cost GNSS receiver for outdoor use or
tracking systems for indoor use. This section discusses the design and implementation of atti-
tude, position, and velocity estimations for both the ground robot and the quadrotor, addresses
the lateral drifting, and improves the vertical position of the quadrotor platform.

5.1. Quadrotor State Estimations

Using a complementary filter, the attitude measurement is performed by fusing high-
frequency gyroscope measurements with low-frequency magnetometer and accelerometer
measurements. For the sake of direct implementation in embedded systems, the discrete
quaternion representation of the attitude estimation is given as follows [32]:[

q̂qqk+1
b̂bbk+1

]
=

[
III4 − T

2 Ξ(qqqk)
0 III3

][
q̂qqk
b̂bbk

]
+

[ 1
2 Ξ(qqqk)kkk1q

kkk2q

] n

∑
i=1

(yyyik × ŷyyik)

(21)

where T as the sampling time interval and the sub-index k abbreviates the time instant
t = kT; q̂qq and b̂bb are the estimated attitude in quaternion and the estimated gyro bias,
respectively. In addition, the gains kkk1q and kkk2q are positive and tuned for best performance;
III3 and III4 are 3× 3 and 4× 4 identity matrix, respectively. Furthermore, the term (yyyik × ŷyyik)
represents the variation between the estimated inertial vector and the measured one in the
body frame. In practice, two vectors are utilized, which are the earth’s gravity vector and
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the earth magnetic field vector, and can be measured in body frame by an accelerometer (aaa)
and a magnetometer (mmm). Hence the term ∑n

i=1(yyyik × ŷyyik) can be implemented as follows:

2

∑
i=1

(yyyik × ŷyyik) =

kkka(aaak ×RRR(qqqk)k[0 0 g]T) + kkkm(mmmk ×RRR(qqqk)[mxo myo mzo ]
T)

(22)

where the vectors [0 0 g]T and [mxo myo mzo ]
T are the earth’s gravity and magnetic

field vectors, respectively, which are measured in inertial frame; RRR(qqqk) is the quaternion
rotation matrix.

This work also implements another complementary filter for accurate position and
velocity estimations. Due to the low sampling rate and lack of accuracy, standalone GNSS
systems are not reliable when they are used in high-dynamic systems such as quadrotors.
Thus, GNSS data is integrated with accelerometer measurements by a complementary filter
to provide continuous position and velocity estimations. For more reliable estimations in
altitude, a barometer is used to provide the measurements of height. The position and
velocity complementary filter is provided in discrete-time form as follows: p̂ppk+1

v̂vvk+1
b̂bbak+1

 =

III TIII − T2

2 RRR(qqqk)
0 III −TRRR(qqqk)
0 0 III

 p̂ppk
v̂vvk
b̂bbak


+

 T2

2 III
TIII
0

RRR(qqqk)(aaamk + [0 0 g]T) +

kkkp p̃ppk
kkkvṽvvk
kkkbṽvvk


(23)

where p̃pp and ṽvv are the errors in position and velocity, respectively, that represent the
differences between the measured values (i.e., ppp and vvv) and estimated ones (i.e., p̂pp and v̂vv) at
time point k; b̂bba is the estimated accelerometer bias, and kkkp, kkkv, and kkkb are positive gains.

5.2. Ground Robot State Estimation

In a mobile robot navigating through an indoor environment, only the state in plane
(i.e., x, y, and ψ) is needed assuming that the robot moves on a horizontal and flat surface.
However, a robot’s motion could be significantly influenced by terrain characteristics
when it is operating in an outdoor environment. Therefore, it can be oriented around
the three axes of its reference frame in any way, resulting in six degrees of freedom (i.e.,
three positions and three orientations). Through a fusion of IMU, GNSS, and compass
data, the work utilized the same technique as the quadrotor, which is discussed in the
previous sub-section, to determine the localization and orientation of the ground robot.
To enhance the estimations, the positions and orientation of the wheeled mobile robot is
usually calculated based on an odometry according to measurements from motor encoders
as follows [31]:

xk+1 = xk + δskcos(ψk +
δψk

2 )

yk+1 = yk + δsksin(ψk +
δψk

2 )
ψk+1 = ψk + δψk

(24)

At each sampling time k, δsk and δψk are the increments in distance and angle.

6. Experimental Setup and Results

In this section, the proposed guidance, navigation, and control (GNC) system is
implemented and evaluated by a multi-robot system. The performance of the adopted
GNC system was evaluated in two different environments. The first environment was
indoor and included three robotics platforms (i.e., two quadrotors and one ground robot),
as shown in Figure 4. The second environment was implemented outdoor with another
three drones and two car-like robots, as shown in Figure 4. An indoor system demonstrated
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robotic platforms with a motion capture system that provided real-time position and
orientation. Based on several retro-reflective markers mounted on each robot, the motion
capture system ran a software that defined rigid bodies. Each quadrotor executed the
control algorithms with an onboard Intel Aero computer and the ground robot with a
Raspberry Pi 3. In this study, quadrotor drones and ground robots were used to evaluate
the performance of the backstepping controllers with the presence of disturbances. In
addition in this stage, the drone’s ability to track a ground robot and avoid obstacles was
tested in several experiments. Moreover, multi-robot missions were performed outdoors
in different scenarios for surveying and monitoring, as illustrated in Figure 5. A Pixhawk
autopilot was used to test the proposed control and navigation algorithms. The guidance
system and communication between robots were built on a Raspberry Pi using the Robotics
Operating System (ROS).

(a)

(b)

Figure 4. Multi-robot systems: (a) indoor and (b) outdoor.
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(a)

(b)

Figure 5. Surveying mission at the campus of the Hashemite University: (a) a photo from the drone’s
camera and (b) planned automatic mission on a map using sequence of way-points.

6.1. Backstepping and PID Comparison

Two experiments were implemented on each robot platform (i.e., quadrotor and
ground robot). Well tuned PID controllers were adopted in the first experiment and com-
pared with a similar scenario in the second experiment in which backstepping controllers
were implemented, as discussed in Section 3. The performance of each platform was ana-
lyzed by computing the mean squared error (MSE) in positions and velocities. The results
are listed in Table 2 for a quadrotor and Table 3 for a ground robot. The tables show the su-
periority of the backstepping controlled quadrotor and ground robot over PID controllers,
particularly in high-speed paths. Figure 6 illustrates how the BS-controlled quadrotor
was correctly tracking the predefined circular-path, whereas the PID-controlled quadro-
tor was diverging from the high-speed path. A similar performance was demonstrated
by a BS-controlled ground robot on the squared-path. Figures 7 and 8 clearly show the
better performance of the backstepping controller for the quadrotor and the ground robot,
respectively.
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Table 2. Mean squared errors (MSEs) for PID-controlled and BS-controlled quadrotors at differ-
ent velocities.

Parameter
v = 1 m/s v = 3 m/s v = 4 m/s

PID BS PID BS PID BS

MSExy 0.1074 0.0996 0.3712 0.1021 0.4900 0.1160
MSEvxy 0.1889 0.1189 0.4503 0.0839 1.1752 0.4881
MSEz 0.0707 0.0247 0.0475 0.0295 0.0754 0.0444
MSEvz 0.0544 0.0415 0.0865 0.0824 0.0944 0.0997

Table 3. Mean squared errors (MSEs) for PID-controlled and BS-controlled ground robots at differ-
ent velocities.

Parameter
v = 1 m/s v = 3 m/s v = 4 m/s

PID BS PID BS PID BS

MSExy 0.0764 0.0198 0.2614 0.1106 0.4312 0.1995
MSEvxy 0.1796 0.0845 0.7109 0.3108 1.2450 0.6754

Figure 6. A comparison between PID and BS controllers for quadrotors and ground robots
(speed = 3 m/s).

Figure 9 shows the performance of quadrotors using both PID and BS controllers in an
experiment on a squared-path with the addition of fan air flow as a disturbance, located at
(x = 0, y = −1.5 m) and directed toward the y axis. The PID-controlled quadrotor’s highest
deviation from the reference route as a result of the disturbance was 42.4 cm, whereas the
BS-controlled quadrotor’s highest position divergence was 5 cm. Therefore, based on the
BS controller’s good results, it was implemented in ground robots and quadrotors for the
best stability and tracking in multi-robot missions.
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Figure 7. A comparison between PID and BS controllers for quadrotors.
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Figure 9. A comparison between PID and BS controllers due to disturbance.

6.2. GNC System Performance

The backstepping controller was used along with the navigation system in Section 5
and the guidance system in Section 4 for a full guidance, navigation, and control (GNC)
structure to demonstrate the performance of the quadrotors and ground robot in a network
of multi-robots.

An indoor experiment was conducted to demonstrate a mission with two drones and
one ground robot in order to to validate the overall GNC system. In this mission, a main
drone was assigned to follow a ground robot that was traveling in a 4 × 4 squared path
and followed with a 1.2 radius circle. A traveling drone was used to travel to point (−1.5,
−1.5, 1.2) m and hover for a while. This point is one of the squared path’s corners that
the tracking drone will pass through. Figure 10 depicts how the tracking drone avoided
colliding with the traveling drone. Furthermore, it avoided the traveling drone once more
while the last was approaching it, as shown in Figure 10.

The position and velocity of the two drones and the ground robot are illustrated in
Figure 11. The figure shows that the tracking drone was precisely following the ground
robot (i.e., MSExy = 0.173 m, MSEz = 0.046 m, and MSEvxy = 0.125 m/s), despite the fact
that the obstacle avoidance task increased the error between them. The figure also shows
how the tracking drone safely avoided the traveling drone on the 20th and 38th seconds
and returned back to the desired path.
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Figure 11. Positions and velocities of two drones and one ground robot mission.

6.3. Outdoor Missions

Different missions were carried out in an outdoor environment to demonstrate the
performance of a network of several drones and ground robots. The first mission scenario
was carried out with three drones, one of which was assigned to lead the others on a
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predefined path, as illustrated in Figure 12. In this mission, three drones were launched from
the same location, and the leading drone was tasked with following the predefined way-
points while the other two drones followed it safely. Figure 13 illustrates the performance
of the 140-s mission. The average lateral speed (i.e., in the xy direction) of each drone
was approximately 10 m/s at different heights. The three drones completed the mission
precisely and without any collisions, with the follower drones maintaining a nearly constant
distance from the leading drone throughout the mission.

(a)
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(b)

Figure 12. Three-drone mission with one leading the others on a predefined path: (a) four way-points
on a map (b) the trajectories of the three drones.
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Figure 13. Positions and velocities for the three drone mission.

In the second scenario, the three drones were programmed to survey an area of approx-
imately 87,000 m2 at the same time. Each drone was assigned to survey a portion of the area
and photograph various locations, as shown in Figure 14. The mission was completed in
approximately 160 s, with 24 photos of the entire area being taken, as illustrated in Figure 15.
For sake of comparison, the same task was assigned to a single drone. The mission took
approximately 330 s to complete using one drone.

(a)

Figure 14. Cont.
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Figure 14. Three drones surveying a large area: (a) surveyed area on a map, and (b) the path of each
drone with the position of each picture (P).
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Figure 15. Positions and velocities for the three drone mission.

The final outdoor scenario involved two ground robots performing a monitoring task.
As shown in Figure 16, each robot was assigned to follow a different path on campus at
the same time. As shown in Figure 17, each robot was moving at a speed of 5 m/s along
a path that was approximately 1770 m long for the first robot and 2390 m for the second
robot. As a result, the first ground robot completed its assignment in 390 seconds, whereas
the second ground robot completed the mission in 490 s, taking into account the time it
took to launch to the first way-point and return to the starting point.
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Figure 16. Two ground robots in monitoring task: (a) robot’s path on a map using a sequence of
way-points, and (b) the performed path of each robot.
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Figure 17. Positions and velocities for the two ground robots mission.

The goal of the last two tasks was to evaluate the monitoring and inspection process
using a group of aerial and/or ground robots rather than a single robot. The previous
operations demonstrated that using a group of robots speeds up and improves the efficiency
of the work. The robots demonstrated the ability to track way-points without colliding or
intersecting with one another. These two experiments also demonstrated the ability of the
navigation system to precisely locate the aerial and ground robots.

7. Conclusions

This work demonstrated the practical implementation of light-computing nonlinear
algorithms for a full guidance, navigation, and control system for a network of quadrotor
drones and ground robots. For the best path tracking and position and orientation stability,
a backstepping controller was used. In order to implement a robust navigation system for
control and guidance systems, nonlinear complementary filters were used to accurately
estimate attitudes, positions, and velocities. For optimal robot guidance, a potential field
method was used for tracking and obstacle-free path planning. Several indoor and outdoor
experiments were conducted to assess the effectiveness of the GNC system on multi-robot
missions. The results demonstrated the advantages of the proposed system in monitoring
and inspection applications. This work paves the way for future efforts to improve the
navigation system for higher-level perception in order to recognize and classify detected
objects/events and infer some of their attributes. Another interesting aspect of the research
is the use of the proposed GNC on the scales of swarms of quadrotors and ground robots
in a challenging environment.
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