
����������
�������

Citation: Karakish, M.; Fouz, M.A.;

ELsawaf, A. Gait Trajectory

Prediction on an Embedded

Microcontroller Using Deep Learning.

Sensors 2022, 22, 8441. https://

doi.org/10.3390/s22218441

Academic Editors: Benoît Miramond

and Alain Pegatoquet

Received: 26 August 2022

Accepted: 27 October 2022

Published: 3 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Gait Trajectory Prediction on an Embedded Microcontroller
Using Deep Learning
Mohamed Karakish 1,2,* , Moustafa A. Fouz 1 and Ahmed ELsawaf 1

1 Mechanical Engineering Department, College of Engineering and Technology, Cairo Campus,
Arab Academy for Science, Technology and Maritime Transport (AASTMT), Cairo 11757, Egypt

2 Faculty of Engineering, German International University, Cairo, Egypt
* Correspondence: mohamed.karakish@student.aast.edu or mohamed.ayman@giu-uni.de

Abstract: Achieving a normal gait trajectory for an amputee’s active prosthesis is challenging due
to its kinematic complexity. Accordingly, lower limb gait trajectory kinematics and gait phase
segmentation are essential parameters in controlling an active prosthesis. Recently, the most practiced
algorithm in gait trajectory generation is the neural network. Deploying such a complex Artificial
Neural Network (ANN) algorithm on an embedded system requires performing the calculations on
an external computational device; however, this approach lacks mobility and reliability. In this paper,
more simple and reliable ANNs are investigated to be deployed on a single low-cost Microcontroller
(MC) and hence provide system mobility. Two neural network configurations were studied: Multi-
Layered Perceptron (MLP) and Convolutional Neural Network (CNN); the models were trained
on shank and foot IMU data. The data were collected from four subjects and tested on a fifth to
predict the trajectory of 200 ms ahead. The prediction was made for two cases: with and without
providing the current phase of the gait. Then, the models were deployed on a low-cost microcontroller
(ESP32). It was found that with fewer data (excluding the current gait phase), CNN achieved a better
correlation coefficient of 0.973 when compared to 0.945 for MLP; when including the current phase,
both network configurations achieved better correlation coefficients of nearly 0.98. However, when
comparing the execution time required for the prediction on the intended MC, MLP was much faster
than CNN, with an execution time of 2.4 ms and 142 ms, respectively. In summary, it was found that
when training data are scarce, CNN is more efficient within the acceptable execution time, while MLP
achieves relative accuracy with low execution time with enough data.

Keywords: gait trajectory prediction; deep learning; MLP; CNN; embedded system; microcontroller;
TensorFlow Lite micro; ESP32

1. Introduction

Walking is an essential activity for human locomotion. However, it is a very complex
process, and any disorder, instability, or incoordination can lead to deviations and chal-
lenges during locomotion [1]. Furthermore, gait deviations faced by lower-limb amputee
patients caused by prosthetics are critical in the long term. These deviations are caused
by the asymmetry or the non-repeatability differences between a healthy person and an
amputee’s gait [2]. As a result, these anomalies can increase the energy cost during motion,
overload the muscles, and cause damage to joint structures and skin. Moreover, to avert
these complications, lower limb kinematics are a critical factor when designing active
intelligent prostheses [3,4].

Various techniques for different applications are adopted to analyze gait kinematics
and kinetics [5]. The first technique is motion capture systems, utilizing infrared cameras
with reflective markers [6–8]. In addition, relatively low-cost non-marker-based image
processing using time of flight (TOF) cameras in motion tracking, such as in Microsoft
Kinect, are used in this method [7,9]. The second technique uses inertial measurement

Sensors 2022, 22, 8441. https://doi.org/10.3390/s22218441 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22218441
https://doi.org/10.3390/s22218441
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5049-8762
https://orcid.org/0000-0002-8828-1294
https://orcid.org/0000-0002-9971-2088
https://doi.org/10.3390/s22218441
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22218441?type=check_update&version=1


Sensors 2022, 22, 8441 2 of 22

units (IMU) by positioning the IMU sensor on different body parts and measuring the
kinematic parameters (angle, angular velocity and acceleration) for each joint (hip, knee,
and ankle) and generates a 3D kinematic model used for gait analysis [2,7,10–13]. The third
type uses an array of force sensors under the foot to measure the ground reaction force
(GRF) and its the distribution on foot. Using the scalar of the reaction force and the center
of the reaction force gait cycle can be recreated [7,14]. Finally, electromyography is used to
measure the contraction of the main lower limb muscles—hip muscles, shank, and ankle
muscles [15]—using surface-mounted electrodes to plot the kinematic model of the gait
cycle [7].

From 2010 to 2020, the sensory-based publications on lower limb kinematics signal
recording focused on using wearable sensors by nearly 79% of the publications, such as
IMU sensors, force sensors, and EMG sensors, while only 12% used vision-based and other
techniques [1,16]. Vu et al. [1] conducted a study on detecting gait phase and found that the
IMU was the most commonly used sensor in gait analysis phase detection by nearly 78%
of the publications compared to 14% for force and 8% for EMG sensors. Although force
sensors are relatively low cost and show high precision in gait analysis [17], the sensor’s
signal needs to be filtered to remove the noise that can affect the results. Furthermore, due
to the dynamic load exerted on the sensor by the foot during the gait cycle, the expected
lifespan of the sensor can be short due to the mechanical wear [1]. On the other hand, EMG
sensors have become less prominent due to their complexity of usage in data acquisition,
processing [18], and for its sensitivity to any substance trapped between the probe and
the skin, such as moisture [1]. Furthermore, the IMU sensor module is relatively cheap,
reliable, has low power consumption, and can be easily positioned on the body. It consists
of three sensors: an accelerometer, a gyroscope, and a magnetometer used to measure
angular velocity and linear acceleration for the gait cycle analysis.

There is a progressive focus on analyzing the human gait using different techniques;
each has its benefits and drawbacks according to the application [7]. Extracting the gait
motion characteristics helps in detecting gait deviations which can be an indication of a
possibility of tripping, slipping, or balance loss [19–23]. Alternatively, it can compensate
for the delay of the response time of the control system [24–26]. Moreover, the lower
limb’s future trajectory prediction can be used to solve numerous problems facing robotic
lower limb prothesis/orthosis. Furthermore, detecting the current phase in the gait cycle
can benefit the assistive powered prostheses control. The gait phase has the required
information to be able to determine the needed angle, angular velocity, and torque, which
can improve the performance of the controller by providing the current gait phase [27–29].
As a result, better control has an effect on the patient, which can help with reducing the
energy cost of walking with a powered limb [30]. The human gait cycle can be segmented
into two main phases (stance phase and swing phase), four phases (initial contact, foot flat,
heel off, and toe-off) or even seven phases (loading response, mid stance, terminal stance,
pre swing, initial swing, mid swing, and terminal swing) [17,31].

From the previous research, it was found that the LSTM network achieved the best
results in time-series data prediction [32] and especially in detecting human activity recog-
nition or predicting human gait cycle kinematics. However, we try to achieve an embedded
system in a prosthesis that does not depend on an external computing source by any means,
wired or wireless (PC, servers, . . . , etc.), that is as reliable as possible, by implementing an
LSTM network on an embedded system microcontroller to detect human activity.

This study aims to develop a deep MLP and CNN model to predict a future frame of
gait trajectory. Furthermore, we investigate the capability of MLP and CNN in handling
sequential data with an accuracy comparable to that of a long short-term memory (LSTM)
neural network. This approach targets using the current and previous sensor readings to
predict the future gait trajectory window while using new readings for each prediction
to avoid the accumulation of error. Moreover, we study and compare the accuracy of
regression (forecasting) of both neural network configurations while maintaining an accept-
able computational time. What is more, we study the capability of a low-cost, low-power



Sensors 2022, 22, 8441 3 of 22

microcontroller in implementing both models while achieving a good inference time on the
targeted hardware.

This article is organized as follows. Firstly, Section 2 contains the previous related
research for each part of this study. Next, Section 3 contains the materials and methods,
discussing the used dataset and its properties, data processing, developed machine learning
algorithms and prediction performance evaluation methods. Then, Section 4 shows the
results from the trained models and a comparison between the used methods. Then,
Section 5 has a discussion of the results. Finally, Section 6 includes the conclusion of
this study.

2. Related Work

In this study, the first part is how to capture the motion parameters of a person.
Ahmedi et al. [33] indicated the possibility of the reconstruction of a 3D gait kinematic
model with efficient computation using seven IMU and foot force sensors. Furthermore,
Hu et al. [34] proposed a method to estimate the joint angles of lower limbs (i.e., hip, knee
and ankle angles) using the minimal number of IMUs of only four sensors. Mishra et al. [35]
and Yin et al. [36] used the surface EMG signals of EMG sensors on different muscles in
gait analysis and measured speed to develop EMG-driven speed-control for exoskeleton
motion control.

The second area is gait kinematic trajectory future windows prediction. Binbin
Su et al. [37] used an LSMT neural network to predict lower body segment trajectory
(angular velocity of the thigh, shank and foot) up to 200 ms (10 time frame) ahead in the
future based on past observations up to 600 ms (30 time frame), and they achieved a z-score
normalized angular velocity error of 0.005, MAE of 0.299, RMSE of 0.487 and Coefficient of
Determination of 0.91 for the inter-subject’s foot trajectory. Furthermore, Zaroug et al. [38]
used different LSTM neural network architectures (Vanilla, Stacked, Bidirectional and
Autoencoders) in predicting lower limb kinematic parameters (angular velocity and linear
acceleration of the thigh, shank and foot) up to 100 ms (five time frames) ahead, and they
reported that the best result was achieved using autoencoder LSTM architecture with a
normalized angular velocity MAE of 0.276 and RMSE of 0.419 for the inter-subject’s foot
trajectory. Zaroug et al. also [39] used an autoencoder LSTM neural network architecture
to predict lower body segment trajectory (angular velocity of the thigh, shank) up to five
samples frontwards using a previous window size of 25 samples, and they attained a nor-
malized angular velocity MAE of 0.28, MSE of 0.001 and Correlation Coefficient between
the predicted and actual angular velocity of 0.99 for the inter-subject’s thigh trajectory,
and they attained an MAE of 0.24, MSE of 0.001 and Correlation Coefficient of 0.99 for the
inter-subject’s shank trajectory. Additionally, Sun et al. [12] proved that a feed-forward
neural network is helpful in time sequence data and capable of predicting IMU human gait
kinematic parameters (acceleration and angular velocity) based on readings from the IMU
from other body parts, obtaining a Correlation Coefficient of 0.89 for predicting the angular
velocity of the shank using only the IMU readings from the foot and a Correlation Coeffi-
cient of 0.8 for predicting the angular velocity of the thigh using only the IMU readings
from the foot while using a window of size five-time frames.

The third area involves studying the effect of the current gait phase on the accuracy of
the trained models. In most research for gait analysis, a four-phase model is commonly
used so that the gait is partitioned into: (a) the initial foot contact (IC) with the ground or
Heel Strike (HS); (b) the loading response phase or Flat Foot (FF); (c) the heel lifting or Heel-
Off (HO); and (d) the initial Swing Phase (SP) or Toe-Off (TO). However, Taborri et al. [40]
proved that a two-phase model had the sufficient data to control the knee module of an
active orthosis. For that, the gait was segmented into two phases, (a) Swing Phase (SW); and
(b) Stance Phase (ST), to avoid any computational complexity due to hardware limitations.
Cho et al. [41] compared two-phase segmentation methods, first using a camera-based
system and the other using an IMU-based system, while observing the sagittal, frontal,
and transverse planes for body joints. This method proved that the IMU system could



Sensors 2022, 22, 8441 4 of 22

be reliable and be used in gait phase segmentation. In the same study mentioned before,
Binbin Su et al. [37] used an LSTM neural network architecture to detect five phases of
the gait cycle (loading response, mid-stance, terminal stance, pre-swing, and swing) up
to 200 ms (10 time frames) ahead in the future based on past observations up to 600 ms
(30 time frames), and they achieved a detection accuracy of 79% for the loading response
phase, 87% for the mid-stance phase, 77% for the terminal stance phase, 85% for the pre-
swing phase, and 95% for the swing phase for the inter-subject test. To demonstrate the
potential of CNNs, it have been used for tasks such as autonomously detecting human
activities using the accelerometer sensor raw data from fitness equipment and smartphones.
Yang et al. [42] used the Deep Convolutional Neural Network to classify human activities
based on time-series readings and stated that the benefits of using DCNN in this applica-
tion are: feature extraction can be performed by CNN automatically by using raw input
data, and feature extraction and classification can be performed on a single CNN model,
which can be less hardware intensive than dividing both tasks on more than one model.
Furthermore, Lee et al. [14] used a smart insole with on-board sensors (pressure sensor,
accelerometer, and gyroscope sensor) and DCNN neural network architecture to detect
seven gait phases for seven gait types (walking, fast walking, running, stair climbing, stair
descending, hill climbing, and hill descending) and proved that the best classification rate
could be achieved by using the three sensors and could achieve a 94% total classification
rate using the data of five window step input sensors data.

Finally, the main aim of the study to validate the capability of a microcontroller in
the predection of future gait trajectory in viable time. Alessandrini et al. [10] achieved an
accuracy and reached 95.54% by applying a trained biLSTM network on an STM32L476RG
microcontroller, when observing the load of the neural network on the hardware of the
microcontroller. Furthermore, it was found that the network could need more than 100% of
the available RAM, and the inference time could reach 150 ms to achieve the best accuracy.

3. Materials and Methods
3.1. Dataset and Its Properties

In this research, the human gait database (HuGaDB) for activity recognition from
wearable inertial sensors was used, which was published by Chereshnev et al. [43] in order
to help the community research gait analysis for both human activity recognition and how
are they performed. At the same time, it is also used to understand the movement of the
different parts of the lower limb, each on its own and relative to the other parts, while
performing different activities such as walking, running, and going up and down stairs.
Furthermore, the dataset consists of readings from six different MPU9250 inertial sensors,
two of them placed on the rectus femoris muscle five centimeters above the knee, the other
two installed around the middle of the shinbone at the level where the calf ends, and the
last pair positioned on the feet on the metatarsal bones, as illustrated in Figure 1.

The IMU’s accelerometer and gyroscope data collection was completed on 18 healthy
young adults: 4 females and 14 males, with an average age of 23.67 (std: 3.69) years,
an average height of 179.06 (std: 9.85) cm and an average weight of 73.44 (std: 16.67) kg.
The contributors performed different activities—sitting, standing up, walking, going up
the stairs, walking, sitting down—at different speeds, without any obstacles in their way.
Each activity was repeated for each participant, and during the activity, the data from the
sensors were recorded, giving a total of 2,111,962 samples.



Sensors 2022, 22, 8441 5 of 22

Figure 1. Location of inertial sensors position on the lower limbs (black) and the used sensors’
readings (red).

3.2. Data Prepossessing

Walking data were used from the dataset, which was recorded while walking at
various speeds and turning at the end of the test course. These variations in the recorded
gait can result in a more generically trained neural network that is not focused on a certain
walking speed. In addition, the problem with the dataset is that some gyroscope readings
were corrupted due to the amplification of the data, which led to clipping of the sensor
signal. Only the data from the four subjects whose gyroscope readings had not been
corrupted were used in the research.

The data of four kinematic parameters from the left leg were used on the unilateral
amputee’s active prophesies: accelerometer values of the shank along the x and z-axes,
and gyroscope values of both the shank and the foot about the y-axis, as shown in Table 1
and Figure 1.

Table 1. Left Limb Kinematic Parameters.

Limb Sensor Axis

Shank Accelerometer X-axis
Shank Accelerometer Z-axis
Shank Gyroscope Y-axis
Foot Gyroscope Y-axis



Sensors 2022, 22, 8441 6 of 22

The dataset was made from the raw readings recorded from the sensors. A win-
dowed moving average filter (MAF) was used to filter the data of both the gyroscope and
accelerometer [44]. This filter was used in order to counter the bias drift of the inertial
sensors [45], which can be represented by the following equation [46]:

z(n) =
1

P + 1

P

∑
j=0

x(n− j) (1)

where z(n) is the output filtered data, while the input unfiltered data is x, and P is the
length of the window. The more samples P + 1 averaged over, the smoother and more
delayed the output. The delay occurs because the output z(n) is a function of only the
current and previous inputs x(n− j), 0 ≤ j ≤ P, filtered data with an averaging window
of 3, as shown in Figure 2a. The moving average value was chosen to avoid over smoothing
and losing important features in the signal. Then, the samples were normalized to mean
zero and unit variance using z-score normalization, as shown in Figure 2b.

Version September 12, 2022 submitted to Sensors 6 of 23

Table 1. Left Limb Kinematic Parameters.

limb sensor axis

Shank Accelerometer X-axis
Shank Accelerometer Z-axis
Shank Gyroscope Y-axis
Foot Gyroscope Y-axis

The dataset was made from the raw readings recorded from the sensors. A win-204

dowed moving average filter (MAF) was used to filter the data of both the gyroscope205

and accelerometer [45]. This filter was used in order to counter the bias drift of the206

inertial sensors [46], which can be represented by the following equation [47]:207

z(n) =
1

P + 1

P

∑
j=0

x(n − j) (1)

where z(n) is the output filtered data, while the input unfiltered data is x, and P is the208

length of the window. The more samples P + 1 averaged over, the smoother and more209

delayed the output. The delay occurs because the output z(n) is a function of only the210

current and previous inputs x(n − j), 0 ≤ j ≤ P, filtered data with averaging window of211

3,figure (2a). The moving average value was chosen to avoid over smoothened and lose212

important features in the signal. Then, the samples were normalized to mean zero and213

unit variance using z-score normalization, figure (2b).214

(a) (b)

Figure 2. (a) Filtered Data. (b) Normalized Filtered Data (moving average window = 3).

3.3. Time series sequential data into supervised learning frames transformation215

Human gait cycle kinematic shown in table 1, parameters are time-series data216

which are either linear acceleration or angular velocity sampled over fixed time intervals.217

Moreover, the four parallel readings or four variable features were received from the218

two IMUs. However, before supplying this recorded time series of IMU data to a neural219

network algorithm, the shape of the parallel data should be transformed into a suitable220

matrix for a supervised machine learning algorithm. The M × N where M is the number221

of samples, and N is the number of features transformed into a 3D dataset using sliding222

window, each layer has a 2D dimension of M × N data sample and the depth of the223

dataset depends on the number of samples to which the sliding window will be applied224

to [48]. A sliding window is used to phrase the time series data into a supervised learning225

format by using the previous time step’s value (z − n) to forecast the subsequent time226

step’s value (z − m) [49], illustrated in Figure 3.227

Figure 2. (a) Filtered data. (b) Normalized filtered data (moving average window = 3).

3.3. Time-Series Sequential Data into Supervised Learning Frames Transformation

For the human gait cycle kinematic shown in Table 1, parameters are time-series data
which are either linear acceleration or angular velocity sampled over fixed time intervals.
Moreover, the four parallel readings or four variable features were received from the two
IMUs. However, before supplying this recorded time series of IMU data to a neural network
algorithm, the shape of the parallel data should be transformed into a suitable matrix for a
supervised machine learning algorithm. For M× N, where M is the number of samples,
and N is the number of features transformed into a 3D dataset using a sliding window,
each layer has a 2D dimension of an M × N data sample, and the depth of the dataset
depends on the number of samples to which the sliding window will be applied [47].
A sliding window is used to phrase the time-series data into a supervised learning format
by using the previous time step’s value (z− n) to forecast the subsequent time step’s value
(z−m) [48], as illustrated in Figure 3.

3.4. Machine Learning Models for Phase Segmentation and Trajectory Generation

In time-series data, forecasting or predicting the output can be a complex task due to
the temporal dependence between the data. Moreover, complicated time-series forecasting
issues with multiple input variables, complex nonlinear relationships, and missing data can
be solved using machine learning methods [47]. In addition, the neural network is required
to process thousands of readings for multiple features. Thus, to predict such complex data
with the limited computational load of the MC, an adequate DNN is investigated.



Sensors 2022, 22, 8441 7 of 22

Figure 3. Sliding window illustration on the ankle’s normalized angular velocity data (1 feature).
The input window of n samples and output windows of z samples, where n = 5 and z = 10.

3.4.1. Deep Multi-Layer Perceptron

Multi-Layer Perceptrons, or MLPs, are less complex with a computational load. More-
over, MLPs approximate a mapping function between input and output, including an input
layer, an output layer, and at least one hidden layer. In the hidden layer, the neurons are
connected to the neurons in the previous and the following layers, as shown in Figure 4.
In the training process, the weights and bias parameters in the hidden layers are adjusted
continuously to make the output value from the output layer consistent with the actual
value from the dataset. MLPs are valuable for time-series analysis for many reasons, such
as being robust to noise, non-linearity, applicable for multi-input multi-output (MIMOS)
configuration, and able to predict multi-step output [49]. Rectified linear units (ReLU)
were used in the hidden nodes, the input nodes, and output nodes, which has a constant
gradient when x > 0, while it is null for x < 0, as shown in Equation (3).

Version September 12, 2022 submitted to Sensors 7 of 23

Figure 3. Sliding Window illustration on the ankle’s normalized angular velocity data (1 feature).
The input Window of n samples and Output Windows of z samples, where n = 5 and z = 10.

3.4. Machine Learning Models for Phase Segmentation and Trajectory Generation228

In time-series data, forecasting or predicting the output can be a complex task229

due to the temporal dependence between the data. Moreover, complicated time series230

forecasting issues with multiple input variables, complex nonlinear relationships, and231

missing data can be solved using machine learning methods [48]. In addition, the neural232

network is required to process thousands of readings for multiple features. Thus, to233

predict such complex data with the limited computational load of the MC, an adequate234

DNN are investigated.235

Input Layer Hidden Layer Hidden Layer Output Layer

Figure 4. DMLP Neural Network Diagram.

3.4.1. Deep Multi Layer Perceptron236

Multiple-layer perceptrons, or MLPs, are less complex with an computational load.237

Moreover, MLPs approximate a mapping function between input and output, including238

an input layer, an output layer, and at least one hidden layer. In the hidden layer, the239

neurons are connected to the neurons in the previous and the following layers, Figure 4.240

In the training process, the weights and bias parameters in the hidden layers are adjusted241

continuously to make the output value from the output layer consistent with the actual242

value from the dataset. MLPs are valuable for time series analysis for many reasons, like243

Figure 4. DMLP Neural Network Diagram.



Sensors 2022, 22, 8441 8 of 22

There are two weight matrices, W and H, and two corresponding bias vectors, b and c.
If there are m hidden neurons, x̄i ∈ Rn×1 (input layer), and ȳi ∈ Rk×1 (output layer),
the dynamics are defined by the following transformations [50]:{

z̄ = fh
(
WT x̄ + b̄

)
where W ∈ Rn×m and b̄ ∈ Rm×1

ȳ = fa
(

HT z̄ + c̄
)

where H ∈ Rm×k and c̄ ∈ Rk×1
(2)

fReLU(x) = max(0, x) (3)

Deep MLP was used mainly as it has a lower computational load compared to other
NN models when deploying the trained model [51], which is crucial due to the limited
resources of the microcontroller. The configuration of the architecture of DMLP was
optimized by the Grid Search Algorithm to find the best number of layers and neurons
in each layer while considering both the size and the accuracy of the model. It may be a
heavy computational algorithm, but it will ensure the best possible configuration, and in
this case, the tuning was completed on PC before deploying on a microcontroller. For that,
the computational load/time is not of concern at this point in comparison with the model
accuracy [52]. The concluded configuration can be found in Table 2.

Table 2. DMLP model architecture.

Layers Type Number of Neurons

0 Input layer 1 × 20
1 Dense layer 100
2 Batch normalization layer -
3 Dense layer 50
4 Dropout layer 0.01
5 Dense layer 30
6 Batch normalization layer -
5 Dense layer 20
6 Output layer 10

- Activation function ReLU
- Learning rate 0.001
- Cost function Mean Absolute Error

3.4.2. Deep Convolutional Neural Network

In neural network applications for image processing, a technique known as convo-
lutional neural networks (CNNs) is used. In challenging computer vision issues, they
have demonstrated their effectiveness by reaching state-of-the-art results on tasks such as
picture classification and by serving as a component in hybrid models for entirely new
problems such as object localization and image captioning [48]. Using CNNs for time-series
forecasting makes use of their ability to learn and automatically extract characteristics
from large amounts of unstructured input data [53]. A sequence of observations can be
considered as a one-dimensional image that a CNN model can interpret and distil into the
most critical features’ aspects.

Primarily, CNN architecture is inspired by visual neuro-science and has convolutional
layers and pooling layers at its initial stages. Fully connected layers were implemented
in sequence with the convolutional and pooling layers. After that, the extracted features
are provided into dense layers—either fully connected or not—to output a vector whose
dimension is the same as the number of classes, as illustrated in Figure 5.



Sensors 2022, 22, 8441 9 of 22

Figure 5. DCNN Neural Network.

A convolutional layer shows the idea of local receptive fields and shared weights. It of-
ten includes several feature maps, and each map is filtered through a shared convolutional
kernel; then, the locally weighted sum is activated through a nonlinear active function.
For a 1D convolutional layer, suppose the input of the convolutional layer is v ∈ RA×B,
where B is the number of bands, and A is the length of the inputs in each band. The output
of the convolutional layer is [54]:

hj,k = f

(
s

∑
b=1

wT
b,jvk+b−1 + aj

)
(4)

where hj,k is the value on the kth output band on the jth feature map, s is the filter size,
wb,j is the weight vector of the bth band of the jth filter, aj is the bias of the jth feature map,
and f is the active function.

The developed CNN model contains 15 layers. The model has four convolution layers,
and every two layers is followed by a max-pooling layer. The convolution layers use
Rectified Linear Unit (ReLU) as the active function, as shown in Equation (3). The last four
layers are not fully connected layers with a droupout layer between each dense with a
dropout rate of 0.01. The activation function of the second not fully connected layer is also
a ReLU function. The configuration of the architecture of DCNN was optimized by the
Grid Search Algorithm to find the best number of layers and neurons in each layer while
considering the load on the microcontroller; the used configuration can be found in detail
in Table 3.



Sensors 2022, 22, 8441 10 of 22

Table 3. DCNN model architecture.

Layers Type Number of Neurons Convolutional Kernel Size

0 Input layer 1 × 20 × 1 -
1 Convolution layer 1 × 20 × 128 2 × 2
2 Max-pooling layer 1 × 8 × 128 2 × 2
3 Convolution layer 1 × 8 × 64 2 × 2
4 Max-pooling layer 1 × 4 × 64 2 × 2
5 Flatten layer - -
6 Dense layer 30 -
7 Dropout layer 0.01 -
8 Dense layer 20 -
9 Dropout layer 0.01 -

10 Dense layer 10 -
11 Dense layer 5 -
12 Output layer 10 -

- Activation function ReLU -
- Learning rate 0.001 -
- Cost function Mean Absolute Error

3.5. Neural Network Model Gait Kinematics Prediction Performance Evaluation

Gait cycle kinematic parameters are numeric values, which can be considered a re-
gression problem. There are a lot of statistical tools to evaluate the performance of the
regression model by comparing the predicted gait trajectory with the actual trajectory. The
most common methods based on the previous research to evaluate the generated trajectory
are as follows [55]:

The evaluation methodology considers the coincidence of the predicted trajectory ŷj
with respect to the actual trajectory yj over n time-steps.

1. Bias

Bias =
1
n

n

∑
j=1

(
yj − ŷj

)
(5)

Bias shows the tendency of the model to either over-predict or under-predict the
trajectory relative to the actual one.

2. Mean Absolute Error

MAE =
1
n

n

∑
j=1

∣∣yj − ŷj
∣∣ (6)

Mean Absolute Error is the average of the absolute prediction error values, which
shows the average error in prediction regardless of its polarity.

3. Root Mean Squared Error

RMSE =

√√√√ 1
n

n

∑
j=1

(
yj − ŷj

)2 (7)

Root Mean Squared Error is the root of the average of the squared prediction error,
which shows the average error in prediction regardless of its polarity using squaring
instead of absolute.

4. Coefficient of Determination (R Squared—R2)

R2 = 1−
∑n

j=1
(

Pj − Aj
)2

∑n
j=1
(

Aj − Ā
)2 (8)



Sensors 2022, 22, 8441 11 of 22

Coefficient of Determination indicates the performance of the model or the goodness
of the fitting. As the R2 value tends to 1, it indicates a better prediction, which can
help with comparing the performance of models.

5. Pearson correlation coefficient

CC =
cov(y, ŷ)

σyσŷ
(9)

where cov(y) is the covariance between the predicted and actual trajectory value.
Meanwhile, σy, σŷ are the standard deviations for y.
Pearson correlation coefficient indicates the accuracy of the model. As the predicted
and actual value tends to form a linear correlation, it indicates a better prediction.
For that, as the correlation coefficient value tends to 1, that means that the model
predicts better values that are closer to the actual ones.

3.6. Phase Segmentation

A different approach was implemented; an extra feature—gait phase segmentation—with
the kinematic data was provided during the training stage to improve the underdevelop-
ment model’s accuracy and computation load.

In testing, we can see the effect of presenting the model with more information on
both the accuracy of trajectory prediction and computational load. The current phase state
was detected and provided to the model in the second test, and statistical analysis was
completed on the predicted trajectory and compared to the first test without the phase
information. The gait was segmented using the threshold method using the ankle’s IMU
angular velocity reading to determine the current phase: either the swing phase or the
stance phase (Figure 6).

Figure 6. Gait Phase Segments (1 TS = 20 ms).



Sensors 2022, 22, 8441 12 of 22

4. Results
4.1. Trained MLP and CNN Testing Results

The MLP and CNN architecture models were coded in Python 3, using the Tensor-
Flow library. The models were trained and tested on a laptop computer with a CPU
Ryzen 9 5950X, GPU RTX 3070, and 32 GB of RAM before being deployed to the ESP32
microcontroller. The models’ hyperparameters were determined first with a Grid Search
Algorithm, including the number of layers, the number of neurons in each layer, batch size,
and the number of epochs. Then, the optimum configuration was manually optimized
by sacrificing the most achieved accuracy to minimize both the inference time and model
size to be suitable for the microcontroller’s hardware (CPU and memory). Due to the
stochastic nature of the algorithms, the models were retrained for the same configuration
until they achieved the best results.The optimized model was trained for 1000 epochs with
an early stop if the performance did not increase for 20 consecutive epochs. The model
fitting evaluated the performance based on the Mean Squared Error for the gait trajectory
regression. The models were trained twice, the first training without providing the info
about the CGP shown in Figures 7 and 8, and the second training, the current phase (Swing
Phase or Stance Phase), was provided in the training data in Figures 9 and 10. The models
are required in both training cases to estimate angular velocity ten time frames ahead based
on the previous five time frames. The model was trained on the kinematic readings of the
shanks of four subjects and tested on predicting a 5th one to test the generalization of the
prediction for unseen subjects, and the statistical results of the first and second training
methods are shown in Table 4 and Figure 11.

Table 4. Models normalized statistical results comparison.

Without CGP With CGP

Parameter MLP CNN MLP CNN

Bias (deg/s) −0.849 −0.406 −0.095 −0.451
MAE (deg/s) 0.209 0.166 0.153 0.150
RMSE (deg/s) 0.298 0.245 0.226 0.217

R2 0.917 0.944 0.952 0.956
CC 0.945 0.973 0.979 0.979

4.2. Microcontroller Inference Test

After training the models on PC, using tinymlgen library based on TensorFlow Micro
Lite, the models were exported using tensorflow standard tools into a C source file that
contains the TensorFlow Lite model as a char array, which was deployed on the microcon-
troller. The MCU used is ESP32, which has 32 bit dual core processor speeds up to 240 MHz,
512 Kb ram, and 4 MB flash memory. The computation cost of the used algorithm has been
measured by feeding the 5th subject kinematic data into the MCU. Afterwards, we calculate
the execution time and memory utilization to the complete the prediction; the results can
be found in Table 5.

Table 5. Microcontroller neural network testing.

Without CGP With CGP

Parameter MLP CNN MLP CNN

Inference Time 2.237 ms 27.327 ms 2.427 ms 142.072 ms
Ram 13% 13% 13% 17%

Memory 11% 11% 11% 11%



Sensors 2022, 22, 8441 13 of 22
Version September 12, 2022 submitted to Sensors 13 of 23

(a) Swing Phase

(b) Heel Strike

(c) Stance Phase

Figure 7. The MLP model without CGP provided 10 time steps ahead prediction for z-score
normalized angular velocity of the foot of the inter subject. The angular velocities are normalized
to have zero mean and unit variance. The actual gait shown in blue, and the predicted trajectory
shown in gold (dashed).

Figure 7. The MLP model without CGP provided 10 time steps ahead prediction for z-score normal-
ized angular velocity of the foot of the inter-subject. The angular velocities are normalized to have
zero mean and unit variance. The actual gait is shown in blue, and the predicted trajectory is shown
in gold (dashed).



Sensors 2022, 22, 8441 14 of 22
Version September 12, 2022 submitted to Sensors 14 of 23

(a) Swing Phase

(b) Heel Strike

(c) Stance Phase

Figure 8. The CNN model without CGP provided 10 time steps ahead prediction for z-score
normalized angular velocity of the foot of the inter subject. The angular velocities are normalized
to have zero mean and unit variance. The actual gait shown in blue, and the predicted trajectory
shown in gold (dashed).

Figure 8. The CNN model without CGP provided 10 time steps ahead prediction for z-score normal-
ized angular velocity of the foot of the inter-subject. The angular velocities are normalized to have
zero mean and unit variance. The actual gait is shown in blue, and the predicted trajectory is shown
in gold (dashed).



Sensors 2022, 22, 8441 15 of 22
Version September 12, 2022 submitted to Sensors 15 of 23

(a) Swing Phase

(b) Heel Strike

(c) Stance Phase

Figure 9. The MLP model with CGP provided 10 time steps ahead prediction for z-score normal-
ized angular velocity of the foot of the inter subject. The angular velocities are normalized to have
zero mean and unit variance. The actual gait shown in blue, and the predicted trajectory shown in
gold (dashed).

Figure 9. The MLP model with CGP provided 10 time steps ahead prediction for z-score normalized
angular velocity of the foot of the inter-subject. The angular velocities are normalized to have zero
mean and unit variance. The actual gait is shown in blue, and the predicted trajectory is shown in
gold (dashed).



Sensors 2022, 22, 8441 16 of 22Version September 12, 2022 submitted to Sensors 16 of 23

(a) Swing Phase

(b) Heel Strike

(c) Stance Phase

Figure 10. The CNN model with CGP 10 time steps ahead prediction for z-score normalized
angular velocity of the foot of the inter subject. The angular velocities are normalized to have zero
mean and unit variance. The actual gait shown in blue, and the predicted trajectory shown in gold
(dashed).

Figure 10. The CNN model with CGP 10 time steps ahead prediction for z-score normalized angular
velocity of the foot of the inter-subject. The angular velocities are normalized to have zero mean and
unit variance. The actual gait is shown in blue, and the predicted trajectory is shown in gold (dashed).



Sensors 2022, 22, 8441 17 of 22Version September 12, 2022 submitted to Sensors 18 of 23

(a) (b)

(c) (d)

Figure 13. Linear correlation between the actual values (x-axis) and the predicted values (y-axis) for foot angular velocity of
the 5th subject. (a) MLP - no CGP.(b) MLP - CGP. (c) CNN - no CGP. (a) CNN - CGP.

Table 4. Models normalized statistical results comparison.

Without CGP With CGP

Parameter MLP CNN MLP CNN

Bias (deg/s) -0.849 -0.406 -0.095 -0.451

MAE (deg/s) 0.209 0.166 0.153 0.150

RMSE (deg/s) 0.298 0.245 0.226 0.217

R2 0.917 0.944 0.952 0.956

CC 0.945 0.973 0.979 0.979

4.2. Microcontroller Inference Test358

After training the models on PC, using TensorFlow Micro Lite, the models were359

exported into a C language array, which can be deployed to microcontroller. The MCU360

used is ESP32 which has 32bit dual core processor speeds up to 240 MHZ, 512Kb ram ,361

and 4MB flash memory. The computation cost of the used algorithm has been measured362

by feeding the 5th subject kinematic data in to the MCU. Afterwards, calculate the363

execution time and memory utilization to the complete the prediction, the results can be364

found in Table 5.365

Figure 11. Linear correlation between the actual values (x-axis) and the predicted values (y-axis)
for foot angular velocity of the 5th subject. (a) MLP—no CGP. (b) MLP—CGP. (c) CNN—no CGP.
(d) CNN—CGP.

5. Discussion

In this study, both neural network configurations were tested for predicting the angular
velocity of the foot using angular velocity and linear acceleration from IMUs mounted on
the shank and an optional input CGP whether the current reading is during the swing
or the stance phase in the gait cycle. Previous studies used neural networks to perform
predictions for the preceding time frame. However, in this study, the algorithms predict
the trajectory of a 10 time frame, or nearly 200 ms ahead, which represents almost 20% of a
full stride. The data were used for daily walking with different speeds, collected from five
subjects, four of which were used for training and the fifth was used for testing.

The models are compared with other publications’ findings based on the best accuracy
while maintaining the size of the network due to the limitations of the hardware capabil-
ities. The trained models could achieve good results even after reducing the size of the
networks. The trained MLP and CNN achieved a root mean squared error of 0.298 and
0.245 (deg/s) and with CGP 0.226 and 0.217 (deg/s) for foot trajectory 200 ms ahead, while
Su Binbin et al. [37] achieved a difference in RMSE of +0.27 (deg/s) for inter-subject imple-
mentation 200 ms ahead using an LSTM network. Zroug et al. [38] achieved a difference
of +0.202 ± 0.25 (deg/s) using the ED-LSTM configuration. Another parameter has been
considered is the linearity between the actual and predicted values. The trained MLP and
CNN has achieved a correlation coefficient of 0.945 and 0.973 (deg/s) and with phase 0.979
and 0.979 (deg/s), while Su Binbin et al. achieved a CC with difference of −0.069 for an
inter-subject test and Zroug et al. achieved a CC of −0.089 ± 0.14; see Table 6 for the other
publications’ results.

The framework of this research project is to develop an embedded active prothesis
system. Therefore, it is more logically to use a system of built IMUs for both training
and deploying stages rather than relying on a fixed image capture system to record gait
motion. Furthermore, regarding neural networks, MLP has the advantage of having a
low computational load relative to the other neural networks with reasonable accuracy
for kinematic gait trajectory data prediction. However, with the availability of data, it
performed much worse than CNN when there was a lack of input data, such as during the



Sensors 2022, 22, 8441 18 of 22

CGP. On the other hand, in CNN, the convolutional layers could extract the features of the
sequential data even without providing any more information about the provided readings.
This means that when using additional input such as the CGP, it did not have the same
significant effect on the accuracy of the CNN (CC from 0.973 to 0.979) as it did on MLP
(CC from 0.945 to 0.979), as seen in Table 6. However, as the accuracy of the CNN did not
increase significantly, the load on the MC surged about five times, reaching 142 ms, while
for the MLP, even with increasing accuracy, the load on the MC stayed at 42 ms, which is
much faster than CNN.

Table 6. Results Comparison.

Su Binbin Zroug Achieved Results (CGP)

Parameter LSTM ED-LSTM MLP CNN

Bias (deg/s) 0.005 - −0.095 −0.451
MAE (deg/s) 0.299 0.276 ± 0.14 0.153 0.150
RMSE (deg/s) 0.487 0.419 ± 0.25 0.226 0.217

R2 - - 0.952 0.956
CC 0.91 0.89 ± 0.14 0.979 0.979

For the current study’s limitations, the training and testing were limited to five subjects
only due to gyroscope data corruption, and that is not enough to generalize the trained
model. In future work, a dataset will be used with more sensor readings such as force
sensors and more subjects. In order to achieve better accuracy while maintaining the size
of the network to counter what is lacking in the current approach, such as Figures 7–13,
the following points have to be solved:

• Phase shift during swing phase, which is more obvious in CNN for both with and
without CGP.

• Initial jump in the prediction especially in CNN.

Version September 12, 2022 submitted to Sensors 17 of 23

(a) Swing Phase (b) Heel Strike Phase

(c) Stance Phase

Figure 11. Comparison between two cases, with and without CGP for MLP model.

(a) Swing Phase (b) Heel Strike Phase

(c) Stance Phase

Figure 12. Comparison between two cases, with and without CGP for CNN model.

Figure 12. Comparison between two cases, with and without CGP for the MLP model.



Sensors 2022, 22, 8441 19 of 22

Version September 12, 2022 submitted to Sensors 17 of 23

(a) Swing Phase (b) Heel Strike Phase

(c) Stance Phase

Figure 11. Comparison between two cases, with and without CGP for MLP model.

(a) Swing Phase (b) Heel Strike Phase

(c) Stance Phase

Figure 12. Comparison between two cases, with and without CGP for CNN model.Figure 13. Comparison between two cases with and without CGP for the CNN model.

6. Conclusions

The developed MLP and CNN can overall predict the trajectory of the foot angular
velocity using angular velocity and linear acceleration data from the shank only for multiple
time frames ahead, with higher accuracy compared to LSTM, which is proven to be reliable
regarding sequential data. Furthermore, when comparing MLP and CNN, it was found
that CNN has the ability to be more reliable than MLP with the minimum amount of
data, which can be helpful in the case of scarce training data. Moreover, when provided
with sufficient data, the MLP and CNN were close in prediction accuracy. Yet, the MLP
network had a lower computational inference time than CNN, which can be critical in
an embedded application, as it can improve the controller’s delay and achieve a smooth
transition between gait phases when used in an active prosthesis such as an active lower
limb or exoskeleton. Additionally, the accuracy can be improved by using more sensors
reading in addition to the IMU sensor. For example, a grid of force sensors will provide
enough data to improve the neural network’s learning.

Author Contributions: Conceptualization, M.A.F.; methodology, M.A.F.; software, M.K.; validation,
A.E.; writing—original draft preparation, M.K.; writing—review and editing, A.E.; supervision, A.E.
and M.A.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The dataset used accessed on 15 April 2022: https://github.com/
romanchereshnev/HuGaDB.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/romanchereshnev/HuGaDB
https://github.com/romanchereshnev/HuGaDB


Sensors 2022, 22, 8441 20 of 22

Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
biLSTM Bi-directional Long Short-Term Memory
CC Correlation Coefficient
CGP Current Gait Phase
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
DMLP Deep Multi-Layered Preceptron
GRF Ground Reaction Force
IMU Inertial Measurement Unit
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAF Moving Average Filter
MCU Microcontoller
MDPI Multidisciplinary Digital Publishing Institute
MLP Multi-Layered Preceptron
RMSE Root Mean Squared Error
ST Stance Phase
SW Swing Phase
TOF Time of Flight
TS Time Step

References
1. Vu, H.T.T.; Dong, D.; Cao, H.L.; Verstraten, T.; Lefeber, D.; Vanderborght, B.; Geeroms, J. A Review of Gait Phase Detection

Algorithms for Lower Limb Prostheses. Sensors 2020, 20, 3972. [CrossRef]
2. Clemens, S.; Kim, K.J.; Gailey, R.; Kirk-Sanchez, N.; Kristal, A.; Gaunaurd, I. Inertial Sensor-Based Measures of Gait Symmetry

and Repeatability in People with Unilateral Lower Limb Amputation. Clin. Biomech. 2020, 72, 102–107. [CrossRef]
3. Rajt’úková, V.; Michalíková, M.; Bednarčíková, L.; Balogová, A.; Živčák, J. Biomechanics of Lower Limb Prostheses. Procedia Eng.

2014, 96, 382–391. [CrossRef]
4. Vidya, B.; Sasikumar, P. Parkinson’s Disease Diagnosis and Stage Prediction Based on Gait Signal Analysis Using EMD and

CNN–LSTM Network. Eng. Appl. Artif. Intell. 2022, 114, 105099. [CrossRef]
5. Alaqtash, M.; Yu, H.; Brower, R.; Abdelgawad, A.; Sarkodie-Gyan, T. Application of Wearable Sensors for Human Gait Analysis

Using Fuzzy Computational Algorithm. Eng. Appl. Artif. Intell. 2011, 24, 1018–1025. [CrossRef]
6. Rábago, C.A.; Whitehead, J.A.; Wilken, J.M. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait. PLoS ONE

2016, 11, e0166815. [CrossRef]
7. Muro-de-la-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait Analysis Methods: An Overview of Wearable and

Non-Wearable Systems, Highlighting Clinical Applications. Sensors 2014, 14, 3362–3394. [CrossRef]
8. Ferreira, J.P.; Vieira, A.; Ferreira, P.; Crisóstomo, M.; Coimbra, A.P. Human Knee Joint Walking Pattern Generation Using

Computational Intelligence Techniques. Neural Comput. Appl. 2018, 30, 1701–1713. [CrossRef]
9. Patrizi, A.; Pennestrì, E.; Valentini, P.P. Comparison between Low-Cost Marker-Less and High-End Marker-Based Motion Capture

Systems for the Computer-Aided Assessment of Working Ergonomics. Ergonomics 2016, 59, 155–162. [CrossRef]
10. Alessandrini, M.; Biagetti, G.; Crippa, P.; Falaschetti, L.; Turchetti, C. Recurrent Neural Network for Human Activity Recognition

in Embedded Systems Using PPG and Accelerometer Data. Electronics 2021, 10, 1715. [CrossRef]
11. Yan, L.; Zhen, T.; Kong, J.L.; Wang, L.M.; Zhou, X.L. Walking Gait Phase Detection Based on Acceleration Signals Using

Voting-Weighted Integrated Neural Network. Complexity 2020, 2020, e4760297. [CrossRef]
12. Sun, Y.; Yang, G.Z.; Lo, B. An Artificial Neural Network Framework for Lower Limb Motion Signal Estimation with Foot-Mounted

Inertial Sensors. In Proceedings of the 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor
Networks (BSN), Las Vegas, NV, USA, 4–7 March 2018; pp. 132–135. [CrossRef]

13. Sprager, S.; Juric, M. Inertial Sensor-Based Gait Recognition: A Review. Sensors 2015, 15, 22089–22127. [CrossRef]
14. Lee, S.S.; Choi, S.T.; Choi, S.I. Classification of Gait Type Based on Deep Learning Using Various Sensors with Smart Insole.

Sensors 2019, 19, 1757. [CrossRef]
15. Yuen, C.H.; Lam, C.P.; Tong, K.C.; Yeung, J.C.; Yip, C.H.; So, B.C. Investigation the EMG Activities of Lower Limb Muscles When

Doing Squatting Exercise in Water and on Land. Int. J. Environ. Res. Public Health 2019, 16, 4562. [CrossRef]
16. Khera, P.; Kumar, N. Role of Machine Learning in Gait Analysis: A Review. J. Med. Eng. Technol. 2020, 44, 441–467. [CrossRef]
17. Taborri, J.; Palermo, E.; Rossi, S.; Cappa, P. Gait Partitioning Methods: A Systematic Review. Sensors 2016, 16, 66. [CrossRef]

http://doi.org/10.3390/s20143972
http://dx.doi.org/10.1016/j.clinbiomech.2019.12.007
http://dx.doi.org/10.1016/j.proeng.2014.12.107
http://dx.doi.org/10.1016/j.engappai.2022.105099
http://dx.doi.org/10.1016/j.engappai.2011.04.010
http://dx.doi.org/10.1371/journal.pone.0166815
http://dx.doi.org/10.3390/s140203362
http://dx.doi.org/10.1007/s00521-018-3458-5
http://dx.doi.org/10.1080/00140139.2015.1057238
http://dx.doi.org/10.3390/electronics10141715
http://dx.doi.org/10.1155/2020/4760297
http://dx.doi.org/10.1109/BSN.2018.8329676
http://dx.doi.org/10.3390/s150922089
http://dx.doi.org/10.3390/s19081757
http://dx.doi.org/10.3390/ijerph16224562
http://dx.doi.org/10.1080/03091902.2020.1822940
http://dx.doi.org/10.3390/s16010066


Sensors 2022, 22, 8441 21 of 22

18. Joshi, C.D.; Lahiri, U.; Thakor, N.V. Classification of gait phases from lower limb EMG: Application to exoskeleton orthosis.
In Proceedings of the 2013 IEEE Point-of-Care Healthcare Technologies (PHT), Bangalore, India, 16–18 January 2013; pp. 228–231.
[CrossRef]

19. Ahn, S.; Kim, J.; Koo, B.; Kim, Y. Evaluation of Inertial Sensor-Based Pre-Impact Fall Detection Algorithms Using Public Dataset.
Sensors 2019, 19, 774. [CrossRef]

20. Hori, K.; Mao, Y.; Ono, Y.; Ora, H.; Hirobe, Y.; Sawada, H.; Inaba, A.; Orimo, S.; Miyake, Y. Inertial Measurement Unit-Based
Estimation of Foot Trajectory for Clinical Gait Analysis. Front. Physiol. 2020, 10, 1530. [CrossRef]

21. Lai, D.T.H.; Begg, R.K.; Palaniswami, M. Computational Intelligence in Gait Research: A Perspective on Current Applications
and Future Challenges. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 687–702. [CrossRef]

22. Sawicki, G.S.; Beck, O.N.; Kang, I.; Young, A.J. The Exoskeleton Expansion: Improving Walking and Running Economy.
J. Neuroeng. Rehabil. 2020, 17, 25. [CrossRef]

23. Tao, X.; Yun, Z. Fall Prediction Based on Biomechanics Equilibrium Using Kinect. Int. J. Distrib. Sens. Netw. 2017,
13, 1550147717703257. [CrossRef]

24. Pan, C.T.; Chang, C.C.; Sun, P.Y.; Lee, C.L.; Lin, T.C.; Yen, C.K.; Yang, Y.S. Development of Multi-Axis Motor Control Systems for
Lower Limb Robotic Exoskeleton. J. Med. Biol. Eng. 2019, 39, 752–763. [CrossRef]

25. Tagliamonte, N.L.; Valentini, S.; Sudano, A.; Portaccio, I.; De Leonardis, C.; Formica, D.; Accoto, D. Switching Assistance for
Exoskeletons During Cyclic Motions. Front. Neurorobotics 2019, 13, 41. [CrossRef]

26. Tanghe, K.; De Groote, F.; Lefeber, D.; De Schutter, J.; Aertbeliën, E. Gait Trajectory and Event Prediction from State Estimation for
Exoskeletons During Gait. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 211–220. [CrossRef]

27. Cherelle, P.; Grosu, V.; Flynn, L.; Junius, K.; Moltedo, M.; Vanderborght, B.; Lefeber, D. The Ankle Mimicking Prosthetic Foot
3—Locking Mechanisms, Actuator Design, Control and Experiments with an Amputee. Robot. Auton. Syst. 2017, 91, 327–336.
[CrossRef]

28. Kazerooni, H.; Steger, R.; Huang, L. Hybrid Control of the Berkeley Lower Extremity Exoskeleton (BLEEX). Int. J. Robot. Res.
2006, 25, 561–573. [CrossRef]

29. Grimmer, M.; Schmidt, K.; Duarte, J.E.; Neuner, L.; Koginov, G.; Riener, R. Stance and Swing Detection Based on the Angular
Velocity of Lower Limb Segments During Walking. Front. Neurorobotics 2019, 13, 57. [CrossRef]

30. Martini, E.; Crea, S.; Parri, A.; Bastiani, L.; Faraguna, U.; McKinney, Z.; Molino-Lova, R.; Pratali, L.; Vitiello, N. Gait Training
Using a Robotic Hip Exoskeleton Improves Metabolic Gait Efficiency in the Elderly. Sci. Rep. 2019, 9, 7157. [CrossRef]

31. Neumann, D.A. Kinesiology of the Musculoskeletal System—E-Book: Foundations for Rehabilitation; Elsevier Health Sciences:
Amsterdam, The Netherlands, 2013.

32. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural
Networks Learn. Syst. 2017, 28, 2222–2232. [CrossRef]

33. Ahmadi, A.; Destelle, F.; Unzueta, L.; Monaghan, D.S.; Teresa Linaza, M.; Moran, K.; O’Connor, N.E. 3D Human Gait
Reconstruction and Monitoring Using Body-Worn Inertial Sensors and Kinematic Modeling. IEEE Sensors J. 2016, 16, 8823–8831.
[CrossRef]

34. Hu, X.; Soh, G.S. A Study on Estimation of Planar Gait Kinematics Using Minimal Inertial Measurement Units and Inverse
Kinematics. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, Chicago, IL, USA, 26–30 August 2014; pp. 6911–6914. [CrossRef]

35. Mishra, A.K.; Srivastava, A.; Tewari, R.P.; Mathur, R. EMG Analysis of Lower Limb Muscles for Developing Robotic Exoskeleton
Orthotic Device. Procedia Eng. 2012, 41, 32–36. [CrossRef]

36. Yin, G.; Zhang, X.; Chen, D.; Li, H.; Chen, J.; Chen, C.; Lemos, S. Processing Surface EMG Signals for Exoskeleton Motion Control.
Front. Neurorobotics 2020, 14, 40. [CrossRef]

37. Su, B.; Gutierrez-Farewik, E.M. Gait Trajectory and Gait Phase Prediction Based on an LSTM Network. Sensors 2020, 20, 7127.
[CrossRef]

38. Zaroug, A.; Garofolini, A.; Lai, D.T.H.; Mudie, K.; Begg, R. Prediction of Gait Trajectories Based on the Long Short Term Memory
Neural Networks. PLoS ONE 2021, 16, e0255597. [CrossRef]

39. Zaroug, A.; Lai, D.T.H.; Mudie, K.; Begg, R. Lower Limb Kinematics Trajectory Prediction Using Long Short-Term Memory
Neural Networks. Front. Bioeng. Biotechnol. 2020, 8, 362. [CrossRef]

40. Taborri, J.; Scalona, E.; Rossi, S.; Palermo, E.; Patanè, F.; Cappa, P. Real-Time Gait Detection Based on Hidden Markov Model: Is It
Possible to Avoid Training Procedure? In Proceedings of the 2015 IEEE International Symposium on Medical Measurements and
Applications (MeMeA) Proceedings, Turin, Italy, 7–9 May 2015; pp. 141–145. [CrossRef]

41. Cho, Y.S.; Jang, S.H.; Cho, J.S.; Kim, M.J.; Lee, H.D.; Lee, S.Y.; Moon, S.B. Evaluation of Validity and Reliability of Inertial
Measurement Unit-Based Gait Analysis Systems. Ann. Rehabil. Med. 2018, 42, 872–883. [CrossRef]

42. Yang, J.B.; Nguyen, M.N.; San, P.P.; Li, X.L.; Krishnaswamy, S. Deep Convolutional Neural Networks on Multichannel Time
Series for Human Activity Recognition. In Proceedings of the 24th International Conference on Artificial Intelligence, Buenos
Aires, Argentina, 25–31 July 2015; pp. 3995–4001.

43. Chereshnev, R.; Kertesz-Farkas, A. HuGaDB: Human Gait Database for Activity Recognition from Wearable Inertial Sensor
Networks. arXiv 2017, arXiv:cs/1705.08506.

http://dx.doi.org/10.1109/PHT.2013.6461326
http://dx.doi.org/10.3390/s19040774
http://dx.doi.org/10.3389/fphys.2019.01530
http://dx.doi.org/10.1109/TITB.2009.2022913
http://dx.doi.org/10.1186/s12984-020-00663-9
http://dx.doi.org/10.1177/1550147717703257
http://dx.doi.org/10.1007/s40846-018-0449-z
http://dx.doi.org/10.3389/fnbot.2019.00041
http://dx.doi.org/10.1109/TNSRE.2019.2950309
http://dx.doi.org/10.1016/j.robot.2017.02.004
http://dx.doi.org/10.1177/0278364906065505
http://dx.doi.org/10.3389/fnbot.2019.00057
http://dx.doi.org/10.1038/s41598-019-43628-2
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://dx.doi.org/10.1109/JSEN.2016.2593011
http://dx.doi.org/10.1109/EMBC.2014.6945217
http://dx.doi.org/10.1016/j.proeng.2012.07.139
http://dx.doi.org/10.3389/fnbot.2020.00040
http://dx.doi.org/10.3390/s20247127
http://dx.doi.org/10.1371/journal.pone.0255597
http://dx.doi.org/10.3389/fbioe.2020.00362
http://dx.doi.org/10.1109/MeMeA.2015.7145188
http://dx.doi.org/10.5535/arm.2018.42.6.872


Sensors 2022, 22, 8441 22 of 22

44. Chereshnev, R.; Kertész-Farkas, A. GaIn: Human Gait Inference for Lower Limbic Prostheses for Patients Suffering from Double
Trans-Femoral Amputation. Sensors 2018, 18, 4146. [CrossRef]

45. Gulmammadov, F. Analysis, Modeling and Compensation of Bias Drift in MEMS Inertial Sensors. In Proceedings of the 2009 4th
International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 11–13 June 2009; pp. 591–596. [CrossRef]

46. Lynch, K.M.; Marchuk, N.; Elwin, M.L. Front Matter. In Embedded Computing and Mechatronics with the PIC32; Newnes: Oxford,
UK, 2016; pp. i–ii. [CrossRef]

47. Banos, O.; Galvez, J.M.; Damas, M.; Pomares, H.; Rojas, I. Window Size Impact in Human Activity Recognition. Sensors
2014, 14, 6474–6499. [CrossRef]

48. Brownlee, J. Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python; Machine Learning
Mastery: San Juan, PR, USA, 2018.

49. Dorffner, G. Neural Networks for Time Series Processing; University of Vien.: Vienna, Austria, 1996. Available online:
http://machine-learning.martinsewell.com/ann/Dorf96.pdf (accessed on 1 May 2022).

50. Bonaccorso, G. Mastering Machine Learning Algorithms: Expert Techniques to Implement Popular Machine Learning Algorithms and
Fine-Tune Your Models; Packt Publishing Ltd.: Birmingham, UK, 2018.

51. Atmaja, B.T.; Akagi, M. Deep Multilayer Perceptrons for Dimensional Speech Emotion Recognition. In Proceedings of the
2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Auckland,
New Zealand, 7–10 December 2020.

52. Liashchynskyi, P.; Liashchynskyi, P. Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS. arXiv 2019,
arXiv:1912.06059.

53. Shi, Y.; Tian, Y.; Wang, Y.; Huang, T. Sequential Deep Trajectory Descriptor for Action Recognition with Three-Stream CNN.
IEEE Trans. Multimed. 2017, 19, 1510–1520. [CrossRef]

54. Feng, Y.; Chen, W.; Wang, Q. A Strain Gauge Based Locomotion Mode Recognition Method Using Convolutional Neural Network.
Adv. Robot. 2019, 33, 254–263. [CrossRef]

55. Botchkarev, A. Evaluating Performance of Regression Machine Learning Models Using Multiple Error Metrics in Azure Machine Learning
Studio; SSRN Scholarly Paper ID 3177507; Social Science Research Network: Rochester, NY, USA, 2018. [CrossRef]

http://dx.doi.org/10.3390/s18124146
http://dx.doi.org/10.1109/RAST.2009.5158260
http://dx.doi.org/10.1016/B978-0-12-420165-1.09985-6
http://dx.doi.org/10.3390/s140406474
http://machine-learning.martinsewell.com/ann/Dorf96.pdf
http://dx.doi.org/10.1109/TMM.2017.2666540
http://dx.doi.org/10.1080/01691864.2018.1563500
http://dx.doi.org/10.2139/ssrn.3177507

	Introduction
	Related Work
	Materials and Methods
	Dataset and Its Properties
	Data Prepossessing
	Time-Series Sequential Data into Supervised Learning Frames Transformation
	Machine Learning Models for Phase Segmentation and Trajectory Generation
	Deep Multi-Layer Perceptron
	Deep Convolutional Neural Network

	Neural Network Model Gait Kinematics Prediction Performance Evaluation
	Phase Segmentation

	Results
	Trained MLP and CNN Testing Results
	Microcontroller Inference Test

	Discussion
	Conclusions
	References

