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Abstract: Elderly gait is a source of rich information about their physical and mental health condition.
As an alternative to the multiple sensors on the lower body parts, a single sensor on the pelvis has a
positional advantage and an abundance of information acquirable. This study aimed to improve the
accuracy of gait event detection in the elderly using a single sensor on the waist and deep learning
models. Data were gathered from elderly subjects equipped with three IMU sensors while they
walked. The input taken only from the waist sensor was used to train 16 deep-learning models
including a CNN, RNN, and CNN-RNN hybrid with or without the Bidirectional and Attention
mechanism. The groundtruth was extracted from foot IMU sensors. A fairly high accuracy of 99.73%
and 93.89% was achieved by the CNN-BiGRU-Att model at the tolerance window of ±6 TS (±6 ms)
and ±1 TS (±1 ms), respectively. Advancing from the previous studies exploring gait event detection,
the model demonstrated a great improvement in terms of its prediction error having an MAE of
6.239 ms and 5.24 ms for HS and TO events, respectively, at the tolerance window of ±1 TS. The
results demonstrated that the use of CNN-RNN hybrid models with Attention and Bidirectional
mechanisms is promising for accurate gait event detection using a single waist sensor. The study can
contribute to reducing the burden of gait detection and increase its applicability in future wearable
devices that can be used for remote health monitoring (RHM) or diagnosis based thereon.

Keywords: gait event detection; deep learning; wearable sensors; hybrid models; attention

1. Introduction

The gait of the elderly is abundant with health information on not only their current
status but also the potential health risk they are at [1]. On top of physical conditions,
even mental conditions such as cognitive impairment and dementia can be found in
their gait [2–5]. In general, several medical conditions can directly or indirectly affect
gait including neurologic disorders (such as Parkinson’s disease, stroke, dementia, and
multiple sclerosis), musculoskeletal disorders (such as sarcopenia, frailty, osteoarthritis, and
lumbar spinal stenosis), cardiovascular diseases (such as arrhythmias, congestive artery
disease, and orthostatic hypotension), affective disorders/psychiatric conditions (such as
depression, fear of falling, and sleep disorders), infections/metabolic diseases (such as
diabetes mellitus, hepatic encephalopathy, vitamin B12 deficiency, and obesity), sensory
abnormalities (such as hearing impairment, peripheral neuropathy, and visual impairment)
and post-hospitalization or post-surgery effects [6–10]. Nonetheless, precise measurement
of the gait among the elderly allows us to predict and detect their medical crisis at an early
stage and to establish an active strategy to prevent unnecessary disease progression.

The challenging work of measuring human gait evolved greatly from the traditional
visual observation [11] to the current methods of using threshold, peak detection, hand-
crafted features, and rule-based methods [12–14]. The introduction of smaller, lighter, and
cheaper sensors such as the inertial measurement unit (IMU) sensors made it possible
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to break free from the laborsome and costly ways of using motion capture systems and
force-plates, which were limited to a strict clinical setting [15,16]. The advent of machine
learning-based methods such as Hidden Markov Models (HMM) [17–19], and Support
Vector Machines (SVM) [20], Deep CNN [21], and Recurrent Neural Networks (RNN) [22]
eased the burden of gait measurement further and opened a new horizon of accurate gait
assessments.

When measuring gait, it can be quantified through temporal characteristics in which
the precise detection of the heel-strike (HS) and toe-off (TO) for each foot matters. From
HS and TO detected, a gait phase gets computed. Although the existing methods have
achieved fairly good performance in detecting, the use of multiple sensors, especially the
placement of the sensors on the lower body parts, interferes with natural walking and
limits its application to the daily life of individuals.

As an alternative to the multiple sensors on the lower body parts, a single sensor on
the pelvis can be suggested for its positional advantage and the abundance of information
acquirable. The pelvis might be an ideal place for any wearable sensors, for it is a common
site for wearing a belt, and the site hinders common daily activities the least. Moreover,
the pelvis is a valuable source of information, since a single sensor detection of the right
and left feet is possible; it is linked to three of the six determinants of gait, namely pelvis
rotation, pelvic tilt, and lateral displacement of the pelvis [23]. It is also aligned to the
vertical midline of the body at the center of mass (COM) and essentially links the lower
limb to the upper body, which enables it to transmit force between the two and control
whole-body balance. Using the signals from the pelvis, activities can be recognized, and
even estimating the postures such as sitting and lying is possible. The signals from the
pelvis are rich with information about daily activity patterns and carry comprehensive
information on gait and motion. Yet, little attempt has been made in employing the pelvis
signals, for the accuracy of using them was not comparable to that of using lower body
part signals [24,25].

Thus, this study aimed to explore a way of improving the accuracy of gait event
detection in the elderly using a single sensor on the pelvis and deep learning models. The
elderly with or without health issues were recruited and their gait was measured. Various
deep learning models learned the interrelationship of the gait event information that exists
in the pelvis signal and predicted gait events. Then, the prediction was compared with the
groundtruth from the sensors on the feet. Suggesting a reliable way of using a single sensor
on the pelvis in gait detection, the study is expected to contribute to reducing the burden of
gait detection and increase its applicability in future wearable devices that can be used for
remote health monitoring (RHM) or diagnosis based thereon.

The main contributions of this study are as follows:

• We use a single IMU sensor attached to the waist to accurately detect both legs’ HS
and TO time;

• We evaluate and compare the performance of different DL models including classical
DL models, RNN models, and CNN-RNN hybrid models;

• We investigate the IMU sensor signals to find the ones that are most relevant to gait
events and achieved higher accuracy than using all six axis information;

• We evaluate the best proposed model on healthy as well as patient data.

2. Methods
2.1. Data-Collection

The subjects of 169 community-dwelling elderly aged between 60 and 80 years were
recruited for the study. This study was approved by the Institutional Review Board of
Kyung Hee University Medical Center (IRB No. 2017-04-001). Written informed consent
was obtained from all the participants before participation in the study. The subjects were
divided into healthy and patient groups depending on their health conditions. The patient
group included subjects with frailty (n = 47), cognitive impairment (n = 8), fall history
(n = 11), and a combination of them(n = 9). Frailty was defined as the 5-item FRAIL scale
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test result of 1 or higher [26] and cognitive impairment was defined as the mini-mental state
examination (MMSE) [27] scores less than 24. Subjects who answered in the questionnaire
that they had a history of falling within the last year and received hospital treatment for it
were included in the patient group. With these criteria, 75 subjects were included in the
patient group while the rest of the 94 were in the healthy group. All subjects were capable
of walking without any help from others or aid from devices at the time of data collection.
Table 1 summarizes the demographic details of the subjects.

Table 1. Demographic information of the subjects.

Characteristic All Subjects n = 169 Healthy Subjects n = 94 Patients n = 75

Age (years), Mean ± SD(Range) 74.89 ± 5.08 (60–87) 74.66 ± 4.75 (64–87) 75.17 ± 5.48 (60–87)
Height (cm), Mean ± SD(Range) 159.67 ± 7.23 (141.9–171) 160.5 ± 7.01 (141.9–171) 155.65 ± 7.55 (151.3–170.4)
Weight (kg), Mean ± SD(Range) 61.1 ± 9.34 (42.3–91) 62.01 ± 9.69 (42.3–91) 59.92 ± 8.79 (42.5–80)

Gender
- Male n (%) 68 (40.24%) 42 (44.68%) 26 (34.67%)
- Female n (%) 101 (59.77%) 52 (55.32%) 49 (65.34%)

Temporal gait pars.
- DLS1 (s), Mean (SD) 0.096 (0.027) 0.093 (0.025) 0.101 (0.028)
- SLS_R (s), Mean (SD) 0.408 (0.027) 0.405 (0.024) 0.41 (0.031)
- DLS2 (s), Mean (SD) 0.101 (0.026) 0.095 (0.021) 0.108 (0.029)
- SLS_L (s), Mean (SD) 0.402 (0.025) 0.401 (0.023) 0.404 (0.028)
- STEP (s), Mean (SD) 0.504 (0.045) 0.498 (0.042) 0.511 (0.049)
- STANCE (s), Mean (SD) 0.605 (0.062) 0.593 (0.054) 0.62 (0.069)
- STRIDE (s), Mean (SD) 1.007 (0.08) 0.994 (0.071) 1.023 (0.089)

Three commercial IMU sensors were used for this study: one on the pelvis and two on
the feet (Xsens MVN, Enschede, The Netherlands). An IMU sensor was attached to a belt
that the subjects wore around their waist, while the other two sensors were tied around
the feet, one for each foot, as depicted in Figure 1. Wearing the sensors, the subjects were
asked to walk a 10-m path three times at their preferred speed and faster than their usual
speed, which made each subject walk the path a total of six times. The three translational
and three rotational inertial data were collected at a sampling rate of 100 Hz and passed
through a 0.5–6 Hz band-pass filter to remove high-frequency noise.

Figure 1. Overview of the proposed phase detection method and the experiment used for data
acquisition. Images on the right show the actual sensors and the experiment being carried out.



Sensors 2022, 22, 8226 4 of 17

Although foot switches or foot pressure insoles are generally considered the gold stan-
dard among wearable sensors, the IMU sensors can allow detailed kinematic information
of the gait [28]. Furthermore, since gait event detection through angular velocity from the
IMU sensor placed on the foot has been demonstrated to be as accurate as foot switches in
estimating times of IC and EC for normal and abnormal gait patterns [29], this study uses
this method and algorithm to obtain the ground truth gait events.

Figure 2a,b show the acceleration and angular velocity signals from the pelvis of
a healthy subject. The acceleration signals included anteroposterior (AP), mediolateral
(ML), vertical (V), while the angular velocity signals included tilt (TIL), obliquity (obl), and
rotation (rot). To detect the actual HS and TO, the angular velocity signals for the flexion
and extension of the right and left foot in the sagittal plane were used (Figure 2c). The
toe-off events were detected as inverted high-amplitude peaks marked with squares, and
the heel-strike events were detected as the zero-crossing before the inverted low-amplitude
peaks marked with triangles in the same figure [29]. Using the four events of HS and TO
of each foot, the groundtruth data was generated (Figure 2d). The period of the gait cycle
with the foot on the ground (HS to TO) was called the stance phase, while that with the
foot in the air (TO to HS) was called the swing phase [30]. Figure 2d shows the right foot
phase signal represented as a dashed red line and the left foot signals as a solid black line.
A value of 1 was assigned for the stance phase and −1 for the swing phase.

Figure 2. Input signals consist of (a) acceleration signals; (b) angular-velocity signals from the pelvis.
(c) Groundtruth is extracted by identifying events from the angular-velocity signals from the feet.
(d) The stance and swing phase signals were generated for the right and left foot as two continuous
groundtruth signals for the regression-based models.

Figure 3 illustrates how the input–output data pairs were generated for training the
one-step-ahead prediction, where the input x refers to the pelvis IMU data in the sliding
window and the output y refers to the right and left phase signal values for the timestep
next to the sliding window. The first pair started with the input of x1, x2, . . . , xw, where
w is the window length and with the output of yw+1. The window was then shifted by
one timestep. Hence for each pair at timestep t, the input was xt−w, xt−w+1, . . . , Xt−1 with
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the output of yt. For the input data of timestep n, a total of n − w input-output pairs were
generated.

Figure 3. The training data is prepared as input–output pairs where the input consist of previous
values (yellow) of the pelvis IMU signals in a moving window and the output is the next value (green)
of groundtruth phase signal after the window.

2.2. Deep Learning Models

A CNN consists of a convolutional layer, an activation function, and a pooling layer,
which can be defined as

ai,j = f

(
M

∑
m=1

N

∑
n=1

wm,n.xi+m,j+n + b

)
(1)

where ai,j is the respective activation, f is the non-linear activation function, Wm,n is
the weight matrix of convolution kernel m × n, Xi+m,j+n is the upper neuron activation
connected to the neuron (i, j), and b is the bias term. The pooling layer is used to reduce
network parameters and simplify the operations.

Among the RNNs, LSTMs and GRUs have become the most commonly used sequential
models. LSTMs were originally proposed to overcome short-term dependency in classical
RNN models [31]. Each LSTM unit is controlled by three gates, a forget gate, an input gate,
and an output gate. For each time step t, the LSTM layer takes as input xt, previous cell
state ct−1 and previous output ht−1, all real-valued vectors, and computes the new cell
state, ct, by:

x̂t = [xt; ht−1]

it = σ(Wi x̂t + bi)

ft = σ(W f x̂t + b f )

ct = ft · ct−1 + yt · tanh(Wc x̂t + bc)

where it and ft are called the input and forget gates. Finally, the output ht is generated by
passing ct through a tanh and multiplying with an output gate, ot.

ot = σ(Wo x̂t + bo)

ht = ot · tanh(ct)

GRUs were introduced to reduce the computational burden in LSTM by integrating
the forget gate and input gate into an update gate [32]. The mathematical expressions of
GRU cell are as follows:

x̂t = [xt; ht−1]

zt = σ(Wz x̂t + bz)

rt = σ(Wr x̂t + br)

h̃t = tanh(Whrt · x̂t)
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ht = (1 − zt) · ht−1 + zt · tanh(Whrt · h̃t)

Self-attention mechanism [33] enables the information from all the hidden states
corresponding to the whole sequence input in RNN by learning the weights for each
hidden state through the following equations where zt is the update gate and rt is the
reset gate.

aij =
exp(eij)

∑k=1
Tx

exp(eik))

where
eij = a(si−1, hj)

ci =
j=1

∑
Tx

aijhj

A total of 16 deep learning models were trained and tested. The models included
classical, convolutional neural network (CNN), Recurrent Neural Networks (RNN) models
with or without the Bidirectional or Attention mechanisms, along with some hybrid ones
that combined CNN with RNN models with or without the Bidirectional or Attention
mechanisms. The classical models included Convolutional Neural Networks (CNN) and
Multi-Layer Perceptron (MLP) model, while the RNN models included Long Short-term
Memory (LSTM), Gated Recurrent Unit (GRU), Bidirectional LSTM (BiLSTM), Bidirectional
GRU (BiGRU), Stacked LSTM, Stacked GRU, Stacked LSTM with the Attention mechanism
(stacked-LSTM-Att), and stacked-GRU with the Attention mechanism (stacked-GRU-Att).
The hybrid models included CNN combined with LSTM (CNN-LSTM), CNN combined
with GRU (CNN-GRU), CNN combined with Bidirectional LSTM (CNN-BiLSTM), CNN
combined with Bidirectional GRU (CNN-BiGRU), CNN combined with Bidirectional LSTM
and the Attention mechanism (CNN-BiLSTM-Att), and CNN combined with Bidirectional
GRU and the Attention mechanism (CNN-BiGRU-Att).

For all models, the raw data for training consisted of six IMU signals from the pelvis
as inputs and the stance and swing phase signals from both feet as outputs. The models
used the generated input and output data samples and made a one-step-ahead prediction.
The hyper-parameters for all models were optimized to obtain the best accuracy for each.
A Dense layer followed by a Linear activation function (AF) was used for the final output.

The architecture adopted for the deep learning models is presented in Figure 4.
Figure 4a shows the architecture for MLP. The model included a Dense layer of 100 neurons
for each of the six input signals and a concatenate layer for combining them before connect-
ing to a Dense layer. As for the CNN model, the input was first reshaped to the dimensions
[samples, timesteps, features] for making it compatible with the one-dimensional convolu-
tional layer, Conv1D (Figure 4b). The Conv1D layer was followed by a one-dimensional
pooling layer, MaxPool1D. After flattening, the outputs went into a Dense layer of 50 neu-
rons, and the last Dense layer connected this sequence to the final output after a Linear AF.
As for the RNN models with a single or stacked LSTM or GRU with or without attention,
the single-layer vanilla LSTM and GRU networks had 100 hidden units and a Dense layer
and a Linear AF followed (Figure 4c). The stacked LSTM and GRU included two layers
stacked together with 100 hidden units for each. The first layer fed its hidden state to the
second one, which was used for the output prediction.

For the hybrid models combining CNN and RNN models, the input with dimen-
sions [samples, window–length, features] was reshaped by splitting the window-length
dimension into two segments. With a window length of 80 timesteps, the input dimen-
sions [samples, 80, 6] were transformed to [samples, 2, 40, 6]. The reshaped input was fed to
Conv1D. MaxPooling1D followed the convolutional layer, which was then flattened at the
end (Figure 4d). The time-distributed layer that wrapped the convolutional blocks enabled
applying the same instance of blocks to all the temporal slices of the input [34]. The output
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from this CNN went into the single layer of LSTM or GRU with 600 hidden units. The
Dense layer followed with Linear AF as in other models.

Figure 4. Brief architectural details for models, (a) MLP; (b) CNN; (c) LSTM and GRU-based models;
(d) CNN-RNN hybrid models; (e) CNN-RNN hybrid models with bidirectional and Attention mecha-
nisms.

As for the models with the Bidirectional and Attention mechanisms, the Bidirectional
mechanism provided the forward and backward sequence of the input to the two different
RNN layers, allowing the network to make use of the past and future context for each
point in the input to make predictions [35]. The Self-attention mechanism enabled the
model to give more weightage to a specific part of the input sequence [36]. In this context,
the Attention allowed the models to find temporal dependencies in certain periods in the
sliding window instead of relying on all to make more accurate predictions. Figure 4e
shows the CNN-RNN hybrid with the Bidirectional mechanism incorporated into the
RNN, and the Attention mechanism that is connected to the output of RNN networks. For
the final output, the Attention layer was followed by the Dense layer and Linear AF as
the others.

All models were trained using the Adam optimizer and mean squared error as the
loss metric. An early stopping criterion was used to retrieve the best model by minimizing
the validation loss with the patience of 10 epochs.

The parameters and data dimensions for each layer of the CNN-RNN hybrid model
with Attention have been given in Figure 5.
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Figure 5. The parameters and data dimensions for each layer of CNN-GRU/LSTM Attention model.

2.3. Output Post-Processing

Post-processing of the output signals was performed to remove the noisy spikes in the
raw outputs and improve the prediction accuracy (Figure 6). As the first step, all transitions
across the zero-line were extracted from the output signals. Then, these transitions were
filtered to remove the disturbances, which could be mistaken as phase transitions. Since
the output signal is essentially a pulse train, the valid phase transitions were identified
by distinguishing between noisy spikes and real pulses. For a pulse to be identified as
valid, three conditions were used: (1) the maximum value of the pulse must be higher
than 0.5, (2) the mean value of the pulse must be higher than 0.6, and (3) the pulse-width
must be higher than three timesteps. The processed output matched the groundtruth better
(Figure 6b).

Figure 6. Groundtruth compared to (a) pre-processed output signal and (b) post-processed out-
put signal.

2.4. Accuracy Measurement

The accuracy was measured by different tolerance windows to verify the precision of
the detection. An event was defined as successfully detected when the output transition
occurred within W, the tolerance window of size (Figure 7). The performance of each model
was measured with the tolerance windows ±1 TS, ±2 TS, . . . , ±6 TS where 1 TS refers
to one timestep of 1 ms. The overall accuracy was defined as the percentage of correctly
detected events to the total number of events.
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Figure 7. The accuracy is measured with different precision levels termed as tolerance windows
±1 TS, ±2 TS, . . . , ±6 TS, where 1 TS is a single timestep of 1 ms measured from the groundtruth
event (blue dotted line).

To investigate further, the accuracy of the models including the data from the patient
group was investigated. The models were trained and tested with the healthy group,
trained with the healthy group but tested with the patient group, and trained and tested
with both groups.

3. Results

Table 2 summarizes the average accuracy of the models trained and tested with the
healthy group by different sizes of tolerance windows. CNN-BiGRU-Att model using the
tolerance window of ±6 TS achieved the highest accuracy of 99.73. All hybrid models with
the Bidirectional mechanism with or without the Attention mechanism demonstrated an
accuracy comparable to the accuracy of the best-performing CNN-BiGRU-Att.

Table 2. Accuracy results for all models.

Model ±1 TS ±2 TS ±3 TS ±4 TS ±5 TS ±6 TS

CNN-BiGRU-Att 93.89 98.29 99.02 99.46 99.64 99.73
CNN-BiLSTM 93.68 98.28 99.14 99.48 99.68 99.76
CNN-BiLSTM-Att 93.52 98.21 99.02 99.46 99.64 99.70
CNN-BiGRU 93.27 98.19 99.10 99.41 99.56 99.73
stacked-LSTM-Att 92.71 97.60 98.91 99.31 99.49 99.59
CNN-GRU 92.33 97.82 98.93 99.40 99.57 99.65
CNN-LSTM 91.77 97.89 98.94 99.44 99.61 99.76
stacked-GRU-Att 91.67 97.54 98.68 99.30 99.59 99.65
BiGRU 89.99 97.08 98.76 99.35 99.55 99.64
stacked-GRU 88.86 96.51 98.53 99.24 99.51 99.60
stacked-LSTM 88.04 96.64 98.53 99.18 99.47 99.59
BiLSTM 86.54 95.98 98.17 99.02 99.35 99.51
GRU 78.98 92.70 96.72 98.32 99.13 99.47
LSTM 76.83 91.61 96.21 98.18 98.89 99.24
MLP 69.55 86.57 92.88 95.73 97.05 97.53
CNN 68.58 87.23 94.25 96.76 98.01 98.56

The accuracy increased as the sizes of the tolerance window increased. With a wider
tolerance window, the detection rate increased while the precision decreased. The best
accuracy for each model was achieved with the tolerance window of ±6 TS. Since all models
gave little deviation from the tolerance window greater than ±3 TS, the comparisons
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between the models were made with the accuracy at the tolerance window of ±1 TS, which
means the most precise detection.

Figure 8 shows the accuracy plots for all events (Figure 8a), HS events (Figure 8b), and
TO events (Figure 8c). The nine key models were chosen as the best-performing ones for
each type. The events for the right and left foot were averaged for all three plots. In all
three events, the accuracy increased as the tolerance window increased. In most models,
higher accuracies were achieved with TO events compared to HS events.

Figure 8. Accuracy plots for key models for (a) all events, (b) HS events, and (c) TO events.

To observe the differences in the performance of the events from the right and left
foot, the absolute errors in timesteps between the predicted and the groundtruth events
were computed. Figure 9 shows the event prediction error of CNN-BiGRU-Att. The mean
absolute error (MAE) for all events was 5.77 ms, whereby those for HS and TO events
were 6.239 ms and 5.24 ms, respectively. The TO events showed fewer errors than the HS
events. No significant difference was found between using the right foot events and the left
foot events.

Figure 9. Event prediction errors for right and left, heel-strike, and toe-off events.

An ablation study with subsets of the six input signals was performed to investigate
the prediction accuracy by the number of input signals. Table 3 shows the list of the best-
performing input combinations for the CNN-BiGRU-Att model. Using either ML or ROT
and using both of them increased the accuracy. When two input signals were used, the
combination of AP and ML and that of AP and ROT gave an accuracy of about 88% at the
tolerance window of ±1 TS. The highest accuracy of over 94% was achieved by using four
input signals AP, ML, V, and ROT. When all six input signals were used, an accuracy of
93.89% was achieved.
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Table 3. Results for ablation study using subsets of input signals.

No. of Input Signals Input ±1 TS ±2 TS ±3 TS ±4 TS ±5 TS ±6 TS

1

[AP] 20.57 27.75 32.12 34.65 36.26 37.52
[ML] 60.12 79.12 88.20 92.57 94.80 96.14
[V] 15.37 21.60 25.12 27.47 28.83 29.74
[TIL] 24.52 33.52 38.65 41.89 44.03 45.42
[OBL] 15.52 24.05 31.13 36.47 40.53 43.18
[ROT] 58.00 75.96 84.42 88.45 90.72 92.09

2 [AP, ML] 88.16 97.12 98.66 99.14 99.45 99.65
[AP, ROT] 87.23 95.45 97.61 98.66 99.27 99.45

3 [AP, ML, TIL] 90.15 97.28 98.68 99.21 99.60 99.70
[AP, ML, ROT] 90.28 97.34 98.86 99.18 99.50 99.68

4 [AP, ML, V, TIL] 93.40 98.25 98.95 99.30 99.60 99.68
[AP, ML, V, ROT] 94.11 98.48 99.13 99.46 99.68 99.79

5
[AP, ML, V, TIL, OBL] 87.97 96.57 98.31 99.14 99.49 99.62
[AP, ML, V, TIL, ROT] 93.89 98.04 98.97 99.53 99.73 99.84
[AP, ML, V, OBL, ROT] 93.99 98.28 98.94 99.38 99.68 99.81

6 [AP, ML, V, TIL, OBL, ROT] 93.89 98.29 99.02 99.46 99.64 99.73

Table 4 shows the accuracy of the CNN-BiGRU-Att model trained and tested with
the same or different subject groups. When all six input signals were used, the models
trained and tested with the healthy group exhibited an accuracy of 93.89% at the tolerance
window of ±1 TS. When trained with the healthy group but tested with the patient group,
an accuracy of 63.10% was achieved. When trained and tested with both groups, the models
achieved an accuracy of 93.63%. When four input signals of AP, ML, V, and ROT were
used, the models trained and tested with the healthy group achieved the highest accuracy
of 94.11% at the tolerance window of ±1 TS, which was higher than that of using all six
signals. When the model was trained with both groups, using all six inputs achieved higher
accuracy at the tolerance window of ±1 TS and ±2 TS. To observe the accuracies of the HS
and TO events for these results, accuracy plots are given in Figure 10. As observed earlier,
the TO events were identified with higher accuracy than the HS events.

Figure 10. Accuracy plots for (a) all events, (b) heel-strike events, and (c) toe-off events when working
with patient data. The plots include results from models trained with all 6 pelvis signals (AllSig)
and with limited 4 signals (LimSig). The training and testing include healthy-trained, patient-tested
(HS-P), healthy-trained, healthy-tested (HS-HS), and mixed-trained and mixed-tested (M-M).
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Table 4. Accuracy results when patient data is used.

Input Signals Training Testing ±1 TS ±2 TS ±3 TS ±4 TS ±5 TS ±6 TS

[AP, ML, V, TIL, OBL, ROT]
HS HS 93.89 98.29 99.02 99.46 99.64 99.73
HS P 63.10 84.09 93.30 96.94 98.44 99.05
Mixed Mixed 93.63 98.04 98.85 99.21 99.44 99.59

[AP, ML, V, ROT]
HS HS 94.11 98.48 99.13 99.46 99.68 99.79
HS P 62.78 83.63 92.40 96.25 97.97 98.69
Mixed Mixed 92.80 97.91 98.95 99.30 99.52 99.66

4. Discussion

This study aimed to explore a way of improving the accuracy of gait event detection
among the elderly using a single sensor on the pelvis and deep learning technology. A total
of 16 models were trained and tested to predict the gait events of the elderly, and their
prediction was compared with the groundtruth acquired from the feet. The CNN-BiGRU-
Att model achieved the highest accuracy of 99.73% at the tolerance window of ±6 TS, which
was an accuracy comparable to that of using multiple sensors on the lower body parts.
An ablation study demonstrating using four signal sets of AP, ML, V, and ROT achieved an
accuracy of over 94% at the tolerance window of ±1 TS. The study pioneered the utilization
of deep learning technology in predicting gait events using the data from the pelvis and
suggested a reliable way of using a single sensor on the pelvis in gait event detection
among the elderly. The findings are expected to contribute to reducing the burden of gait
measurement and increase the potential of various future technologies being incorporated
with the suggested method.

The use of CNN together with RNN models improved the prediction accuracy since
CNN first extracted effective features and then the following RNN models could process
these features sequentially. The added Bidirectional mechanism took into account both for-
ward and backward temporal perspectives, which improved the accuracy further. Adding
the Attention mechanisms to the CNN-BiGRU increased the accuracy even more since the
Attention mechanisms could focus on the timesteps that were more relevant for the output
prediction. Being unable to utilize the temporal nature of the information in the sliding
window, MLP and CNN were not able to predict the phase transitions in the output signal
accurately until ±4 TS, although their accuracy improved as the tolerance window sizes
grew bigger.

Many previous studies have looked at the use of multiple sensors to analyze gait events.
Lin et al. [22] used LSTM-based regression model using five IMUs, two on the thighs, two
on the shins, and one on the left shoe. They achieved the mean error (ME) of 2 ms for HS;
however, large errors for TO were reported with the ME of −18 ms. In [21], Hannink et
al. used a deep CNN-based network with input from two inertial sensors placed on the
feet and predicted different gait parameters including the HS and TO events as output, for
which they reported errors of ±70 ms and ±120 ms, respectively. Sarshar et al. [37], who
also used RNN to train two IMU sensors attached to the shanks, reported an accuracy of
0.9977 for both HS and TO events; however, they did not compute the error in prediction
delays. Utilizing rule-based algorithms, Fadillioglu et al. [38] presented an automated gait
event detection method using a gyroscope attached to the right shank and reported an
MAE of 7 ms and 19 ms for the HS and TO events, respectively. More recently, Yu et al. [39]
also used a single sensor on the right foot with an LSTM-HMM hybrid model for gait
event detection, reporting the accuracy only without mentioning the delays. They reported
accuracy of 0.9679 and 0.9846 for the HS and TO events. But since both of these works used
only a single sensor on the right side, they were unable to get events for the left side. In
comparison, only a single sensor on a comparatively less accurate position of the waist
was used in the proposed method but a much superior overall performance was shown.
The studies using multiple sensors not only hinder the natural gait but are also far from
practical usage of these methods in daily living. If a single sensor is attached to one side of
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the limb, the extraction of gait events from the other side is not possible, hence for complete
gait event information two sensors are required for any location on the lower limb except
for the waist. Even though the waist is a less accurate position as compared to the lower
limb, the proposed method in the current study has still managed to achieve more accurate
gait event detection using a single sensor.

Compared with previous attempts that detected gait events from a single sensor on the
waist, the proposed CNN-BiGRU-Att model achieved far advanced accuracy. According to
a recent survey of gait event detection methods using an IMU sensor mounted on the waist,
Gonzalez et al. [40] used a rule-based method to achieve the lowest MAE of 15 ms and 9 ms
for the HS and TO events, respectively. McCamley et al. [41] proposed a Gaussian CWT-
based gait event estimation method using a single inertial sensor on the waist, reporting an
MAE of 19 ms and 32 ms for HS and TO, respectively. Soaz et al. [42] also used a rule-based
method with a single waist sensor to assess the gait of the elderly for their experiment and
reported an error of 20 ms for HS. Apart from relatively higher errors than the proposed
method, these studies also did not have enough subjects to show the generalizability of
their method.

The motion capture system, though considered the gold standard for gait measure-
ment, requires the installation of expensive equipment. Furthermore, it must be used
indoors in a limited space. On the other hand, gait event detection techniques based on
electromyography signals cannot give better performance than IMU-based sensors due to
sensor location sensitivity, low intra-operator repeatability, low inter-operator reproducibil-
ity, and higher inter-subject variability [43]. For example, in [44], Morbidoni et al. used
multilayer perceptron (MLP) architectures for ground walking EMG signals and reported
an MAE of 21.6 ms and 38.1 ms for HS and TO, respectively. Similarly, Nazmi et al. [45] also
used the artificial neural network for the walking task and reported an MAE of 16 ± 18 ms
and 21 ± 18 ms for HS and TO, respectively.

The study found that the TO events show fewer errors than the HS events. The oc-
currence of extrema in the pelvis signals around these events can serve as a possible
explanation. As presented in Figure 2, the TO events were more aligned with the peaks
in pelvic signals such as V, TIL, and ROT, which were followed by the TO events. These
characteristics may have contributed to the better performance of the TO events compared
with the HS events.

As for the single input signals used, ML and ROT demonstrated an outstanding
performance since they are rich in information on the right and left. The signals AP and V
are the clearest but void of right and left information, so when the prediction was made
based on only either of them, they exhibited the lowest performance. Combining AP with
either ML or ROT might have incorporated the movement information on both the forward
and backward with that on the right and left resulting in fairly improved accuracy. The
overall accuracy of using AP, ML, V, and ROT was higher than the accuracy of using all
six signals, probably because of the bigger variation found in TILT and OBL among the
elderly [46]. AP, ML, and V being acceleration signals may have contributed as well, since
the accelerometer output is generally less prone to sensor location errors compared to
a gyroscope.

When the model was trained and tested with the same and different groups, the models
trained with the healthy group but tested with the patient group exhibited an accuracy of
63.10 at ±1 TS with all the six input signals used. Trained with the healthy group, the model
was not familiar with the variations and abnormalities that the patient group had but its
accuracy improved, as the tolerance window sizes grew bigger. The inclusion of TILT and
OBL in the healthy group did not significantly improve the accuracy of the model, whereas
the inclusion of them in the patient group improved the accuracy, probably because of the
variation in all signals being greater in the patient group. It would be advisable to consider
using all six signals for patients whose signals demonstrate a large variation, even for the
signals considered relatively clear.
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To investigate how the Attention weight varied when there were all six input signals
and when they were limited to four; the value of the average attention weight for each
timestep was plotted using the stacked-LSTM-Att model (Figure 11). When the model used
all six input signals, it gave much greater attention to the double-limb-support (DLS) phase
between the HS and TO events than to the single-limb-support (SLS) phase. When four
signals were used, slightly more attention was paid to the SLS phase with its peak attention
in the DLS phase being lower than that of using all six signals.

Figure 11. Average Attention plotted for the stacked-LSTM model using all 6 input pelvis signals
and limited 4 input signals. The models put more attention to DLS phase between right HS and left
TO as compared to the SLS between right TO and right HS.

One of the limitations of this study is that the proposed method could not be evalu-
ated on other physical impairments such as osteoarthritis and skeletal deformities, and
neurological diseases such as hemiplegia, Parkinson’s disease, Huntington’s disease, and
Alzheimer’s disease. Furthermore, the gait data has not been acquired through the long-
term or continuous monitoring of subjects in their natural environment and everyday lives.
Therefore, our future work will include gait event detection for real-world walking in
non-conventional environments and under unconstrained and uncontrolled conditions.
Furthermore, we will focus more on the real time implementations of these methods to
support gait patients through exoskeleton devices.

5. Conclusions

The study proposed deep learning-based gait detection as a novel and reliable way of
using a single sensor on the pelvis in detecting the gait of the elderly. A total of 16 models
including the CNN, RNN, and CNN-RNN hybrid with or without the Bidirectional and
Attention mechanism were trained and tested and a fairly high accuracy of 99.73% and
93.89% was achieved by the CNN-BiGRU-Att model at the tolerance window of ±6 TS and
±1 TS, respectively. Advancing from the previous studies exploring gait event detection,
the model showed a great improvement in terms of its prediction error having an MAE of
6.239 ms and 5.24 ms for HS and TO events, respectively. For healthy subjects, using all
three acceleration signals with ROT as input signals exhibited better performance compared
to using all six signals; meanwhile, the performance of using all six signals was better for
the patients. Suggesting that reliable gait detection is possible from a single sensor on the
pelvis, the study is expected to contribute to lowering the burden of gait detection and
expand the applicability of gait detection in future wearable devices.
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