
Multimedia Tools and Applications
https://doi.org/10.1007/s11042-022-14111-4

Fast and accurate localization andmappingmethod
for self-driving vehicles based on amodified clustering
particle filter

Anas Charroud1 ·Karim El Moutaouakil2 ·Ali Yahyaouy3

Received: 5 May 2022 / Revised: 16 August 2022 / Accepted: 25 October 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Self-driving systems require the creation of perception, which means that they must learn to
interact with their environment, gather information and perform tasks while driving. Local-
ization and mapping are essential concepts that any autonomous vehicle must perceive,
as they provide information about the location and distance between objects. The absence
of GPS, for example, in tunnels and urban canyons, makes it necessary to develop robust
methods based on other vehicle equipment, such as Lidar, cameras, IMU, or to combine
them all. Based on Lidar measurements, our work presents an architecture consisting of two
main phases of mapping and localization; The mapping phase creates a global map of the
environment based on non-semantic features using a fuzzy c-means algorithm instead of a
semantic algorithm as it was done in some state-of-the-art work. In addition, the remaining
clusters were filtered using the DBSCAN algorithm. The localization phase adopted here
followed the particle filter architecture; motion update, measurement update, and resam-
pling to estimate the positions. The main contribution of this work is the novel extension of
selecting particles to reduce computational time and maintain long-term localization relia-
bility. We have exhibited a method to select relevant particles after motion updates, based
on two approaches: clustering with the k-means algorithm and the sigma points algorithm,
which were thoroughly examined on short sequences of the Kitti dataset to discover the
best one. The selected approach thoroughly tested on the Pandaset dataset. In addition, we
tested our method on a long sequence dataset and compared it with the most recent methods.
The analysis performed demonstrated the speed of our method and its ability to capture
the features needed for real-time localization. Furthermore, it outperformed the well-known
localization methods.

Keywords Localization · Mapping · Particle filter · SLAM · Features extraction ·
Clusteringz

� Anas Charroud
anas.charroud@usmba.ac.ma

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-14111-4&domain=pdf
http://orcid.org/0000-0002-6425-3096
mailto: anas.charroud@usmba.ac.ma

Multimedia Tools and Applications

1 Introduction

With a progression of successful testing and developing speculation. Autonomous vehicles
(AVs) are a step toward revolutionary technology that promotes road safety. Many scientists
and specialists agree that autonomous vehicles are ready to move beyond the experimental
phase [42]. Global organizations such as Tesla and Waymo have invested in autonomous
vehicle research, with some preliminary large-scale projects around the world. AVs assist
in controlling and managing the traffics by the Traffic Flow Prediction (TFP) which exerts
a favourable impact on solving those issues [5]. AVs aim to reduce injuries and fatalities on
the road by eliminating human error, but this is difficult to achieve because the AVs must
know the area in which they are working [42].

AVs require robust localization and mapping to ensure the consistency and reliability of
the tasks. A centimeter error of localization can perturb several AVs tasks including path
planning, avoiding obstacles, lane following, and time of overtaking [38].

A Global Navigation Satellite System (GNSS) is used to locate the vehicle among three
or more satellite signals. However, Global Positioning System (GPS) can have reliabil-
ity problems due to visibility in tunnels, under bridges, in urban canyons and dense tree
canopies, multipath reflections and signal latency. As a result, on most roads, we will not be
able to obtain sufficient information to locate the AVs vehicle. This also means that more
sophisticated techniques are required to achieve sufficient localisation accuracy in difficult
terrains [13, 19, 27].

The Inertial Navigation System (INS) is a key component of most guidance, navigation
and control systems, particularly those which must operate in the absence of GNSS sig-
nals. In this context, an Inertial Measurement Unit (IMU) is the most important component
of the system. The IMU consists of accelerometers and heading gyros whose outputs are
integrated by a suitable algorithm to provide information on the position and orientation of
the vehicle. However, this system suffers from cumulative errors caused by the double inte-
gration of accelerometers and heading gyroscopes. Like INS, wheel-odometry has been a
reliable method for measuring the speed of production vehicles for many years due to its
easy integration, high reliability and low cost. However, wheel-odometry is prone to errors,
especially when the sensors are biased, i.e. when the average is not zero (causing a drift
effect) or when the variance varies over time (causing a diffusion effect). [17, 34]. Sev-
eral machine learning algorithms were proposed to correct the measurement information
provided by the sensors with the GPS measurements [28].

Light Detection and Ranging (Lidar) and camera sensors can separately find the trans-
formation (translation and rotation) that took place in each segment of the trajectory based
on the so-called registration. Registration involves two main steps, namely feature extrac-
tion and feature matching. Features are typically detected from laser scans as 3D points,
or as 2D points from images. Feature matching then determines the similarities between
the extracted features using similarity measures (e.g. Euclidean distances for points, chi-
square test for histograms). After determining the transformation, the vehicle position can
be deduced easily by this formulation (1).

Xt = R ∗ Xt−1 + T (1)

Xt is the position of the vehicle at time t , T is the translation vector, and R is the rotation
matrix.

Iterative Closest Point (ICP) registration is one of the most popular and successful
approaches to local pose estimation [14]. It is the process of registering two point clouds

Multimedia Tools and Applications

by finding the transformations that best align them. The ICP algorithm proposes an opti-
mization that determines the degree of alignment of the last/current scan and calculates the
rigid registration that minimizes the sum of squared Euclidean distances between two sets
of corresponding 3D points; see (2).

argmin
R,T

⎧
⎨

⎩

1

M

M∑

j=1

∥
∥aj − (

Rbj + T
)∥
∥
2

⎫
⎬

⎭
(2)

{aj }j , {bj }j are the 3D coordinates points of two scans A and B.
Despite its advantages, the ICP is sensitive to outliers and only works well when the

two point clouds overlap [6]. It can be slow on large 3D scans because the transformation
has to be calculated by iterating over each pair of points [42]. Due to measurement errors,
the ICP algorithm also fails to achieve good long-term matching accuracy, especially for
non-linear trajectories [6]. To solve this problem, the authors of [2] proposed the Normal
Distribution Transform (NDT), which encodes each voxel with a probability distribution
instead of a single value. The proposed approach addresses two problems in the traditional
3D registration framework. First, it discretised the set of points cloud into voxels using
the NDT feature representation. Second, the authors match the statistical (i.e mean and
variance) properties between two distributions (voxels) as a matching feature and find the
correspondence based on the standard distance metrics of probability theory.

The surveyed methods either cost a lot of time, or they lack reliability, robustness, or
accuracy. In contrast to all these methods that are based on a single sensor. In this work,
we are mainly interested in sensors fusion, i.e., examining more than one source of infor-
mation to localize the vehicle. The particle filter (PF) [16] is one of the methods that offer
the possibility of processing multiple sources, i.e., measurement sensors such as cameras,
radar or lidar, and motion sensors such as IMU or wheel odometry. Measurement sensors
provide a description image of the environment, including the shape of the object and the
distance between the reference vehicle and the objects. Motion sensors provide the trans-
lation and rotation performed between a time segment. Therefore, the particle filter, and
more generally the Bayesian filter, offers the advantage of using the translation and rota-
tion provided by the IMU and correcting the error by examining the difference between the
real distance of the vehicle to objects and the one we have obtained from the measurement
sensors. A particle filter is a form of Bayesian filtering. It has found applications in areas
such as robotics, computer vision, and signal processing [36]. The particle filter extends the
Kalman filter by including additional states for particles that are not associated with a par-
ticular measurement, which provides the flexibility to work with nonlinear trajectories and
also to work without assumptions about the probability distribution, such as Gaussianity in
the Kalman filter family [36]. The PF algorithm iteratively performs two steps: updating the
motion and updating the measurements. After uniformly generating a number of particles,
the motion update calculates the translation and rotation found from the motion sensors for
all the particles. Next, the distance between the global map features and the particles is cal-
culated in order to be compared with the information from the local features. The higher the
similarity, the more likely the position state. The position is calculated by taking the average
of the closest particles or by directly taking their maximum.

In this paper, we propose a modified clustering particle filter, an extension that speeds up
the position computation process by making the matching process fast in the update mea-
surement phase, i.e., instead of matching all particles with the feature map, we use only
a few prototype particles that can be efficiently distinguished. We addressed the particle
selection problem with two approaches: clustering-based and sigma point-based methods,

Multimedia Tools and Applications

each of which is examined in detail. To facilitate understanding of the workflow of our
method, we have exposed an architecture consisting of mapping and localization. The map-
ping phase is responsible for extracting features from the Lidar measurements (especially
fuzzy c-means clustering and noise filtering with DBSCAN) and creating a global map of
the environment. The localization phase is responsible for the input of the IMU and the
results of the mapping phase to determine the corrected position.

The remainder of this paper is organized as follows: In the second part, we present related
work on localization methods. In the third section, we provide a clear description of the
architecture of our framework and the methodologies used to solve the localization task.
The fourth section analyzes the performance of the method on two different datasets: Kitti
[8] and Pandaset [40]. The last section is a conclusion.

2 Related work

In our state of the art, we have found different methods for locating AVs, mainly divided
into three approaches: Registration (scan matching), optimization, and probability-based.
Registration methods are used to find the best transformation (translation, rotation) between
the last and current position of the vehicle. The most interesting work that adopted this
approach was the LiDAR odometry and mapping (LOAM) [43] which used scan-to-scan
and scan-to-map matching with edges and flat plane feature points. However, scan-to-scan
matching consumes more time and energy. LOAM Velodyne [18] is a modified version of
the LOAM [43] characterized by real-time speed. Another extension of the LOAM [43]
method was proposed to reduce the cost of time in scan-to-scan matching. Lightweight and
ground-optimized LOAM (LeGO-LOAM) [31] improved the features extraction process
by removing noisy points and optimizing ground and non-ground points. A downsampling
technique was proposed in A-LOAM [9] in order to reduce the complexity of the scan-to-
scan matching. However, neither LeGO-LOAM nor A-LOAM arrived to reduce efficiently
the high computational time. Deep learning-based methods take place in LO-Net [20] to
reduce the error of the matching process by using the end-to-learning. An extension of
LO-Net [20] was given in the same article [20] named LO-Net-M which is a LO-Net under-
pinned by a mapping stage which gives better results compared to LO-Net. SGLO [32]
have registered good results in term of accuracy and fastness using only sparse geometric
line and plane features with line-to-line and plane-to-plane data associations in the scan-to-
map matching. However, the accuracy of the method depends mainly on the initialization.
Recently, there have been many improvements in the scan matching approach. One way to
overcome the problems of ICP is to use end-to-end learning as in DeepICP [22], which is
an interesting improvement that provides a good registration rate. SDRSAC [1] and DS++
[26] have proposed a method to transform the optimization problem (2) into a semidefi-
nite optimization problem by introducing a symmetric matrix A describing the matching
potential between the points of point pair X and Y = |X|2. The methods transform the
classical optimization problem into maxXY AY with respect to some constraints that depend
mainly on the normalization of the data. This technique offers the possibility to estimate the
NP-hard global solution in (2). The transformation can be derived according to the corre-
spondence in [11]. Gaussian mixture models (GMM) also have their place here to solve the
log problem in (2) by modeling the input data as a maximum likelihood. The advantages
of the GMM-based method are its robustness to noise and outliers [10]. The main idea in it
is to develop an optimization strategy to optimize the transformation matrix by maximizing

Multimedia Tools and Applications

the likelihood [41]. DeepGMR [21] is one of the methods that applied this concept by teach-
ing a deep learning model the similarity between GMM components and points. However,
this technique suffers from a number of problems including noisy data and outliers captured
from 3D lidar measurement, also some problems may appear due to unbalanced density,
partial overlap or scale variation of points between scans that deeply affect the matching
process [41].

The second approach to address the localization and mapping problem are least squares
(or optimization) techniques that aim to minimize (maximize) a cost function while respect-
ing certain constraints. In this area, bundle adjustment is one of the first methods that allows
to simultaneously find the camera position parameter (intrinsic or extrinsic) {Cj } and the
corresponding 3D points {Xi}. The method solves this problem :

min
n∑

i=1

m∑

j=1

(
uij − π

(
Cj ,Xi

))2 (3)

uij is the observation of pixels at node ith and jth, π
(
Cj ,Xi

)
is the projection operator that

projects the 3D coordinate points into 2D coordinates. In general, bundle adjustment (BA)
searches for attachments to find the best parameters

(
Cj ,Xi

)
that yield the 2D point (pixel)

closest to the actual pixel uij . The position can be derived from the extrinsic matrix. BALM
[21] from the recent methods that used bundle adjustment adapted for the 3D Lidar mea-
surement. The results were concatenated with the LOAM [43] method to deduce the map
of the environment. Moreover, BA was used to solve the SLAM problem like in the ORB-
SLAM family [24, 25, 33] which used ORB features to locate cameras and create a map
of the environment. BA method act as a helper technique for locale matching. A tracking
phase was proposed to aid the system in the process of relocation, site recognition, or even
frame matching. frame matching. These feature points are stored in a robust database (DB)
architecture called DBoW2 [7]. ORB-SLAM frameworks have been tested on real-world
data and have achieved high accuracy in terms of tracking points, loop closure, and frame
localization. However, changes in weather and lack of brightness are the main problems for
camera-based methods.

The third option for locating AVs in environments is with the probabilistic perspective.
The authors [30] of have used particle filtering to examine the translation and rotation pro-
vided by the IMU and find higher candidate poles by looking at the difference in between
the features extraction. The authors voxelized the fit point cloud and vertically connected the
cells that exceeded a fixed threshold. In addition, a cylinder was applied to all poles to elim-
inate noise and avoid object overlap. The method achieved good accuracy on the Kitti [8]
data set. Kummerle et al. [15] detected poles and walls according to their characteristics
and distinctiveness in the environment. Localization was performed using a particle filter,
and they obtained a more interesting result. The particle filter was also used in [39] with
an interesting algorithm for feature extraction. The authors have investigated the isolation
and distinction of pole landmarks in the detection process from the point cloud. The method
obtained good results on the Kitti dataset [8]. Schaefer et al. [29] is an interesting work that
used probabilistic map features to speed up the process of location determination and mean-
while construct a map of the environment. the location determination was performed based
on a modified particle filter. The modification is a small perturbation (multiplication with
a generated noise) applied to the predicted state which gives a higher generalization. The
method has been tested on the Kitti [8] and NCLT dataset and has shown excellent accuracy,
especially on the long-term trajectory. A real-time Monte Carlo localization (RT MCL) was
proposed in [38] which a trade-off between handling pose estimation accuracy and real-time

Multimedia Tools and Applications

performance was addressed. RT MCL extracted features as landmarks after fusing Lidar
and radar measurements using the unscented Kalman filter (UKF) and used a tailored par-
ticle filter to derive the vehicle pose. Data association between the global map (generated
offline from the 3D lidar) and the local feature map was performed using ICP matching. The
method showed good results in the CARLA driving simulator [35]. However, the method
may have some distortion in real scenarios, such as an environment without poles and land-
marks. In this paper, we extend the work done in [3] on non-semantic feature map reduction
using k-means, global map generation using GMM and localization using particle filters
by adding a DBSCAN filter after performing fuzzy c-means feature extraction to remove
noisy points and striking lines from the environment. Moreover, we present the modified
clustering particle filter which consists of choosing some relevant particles for position com-
putation. We propose two methods to choose those particles and we analyze their potential
using several tests in real scenarios.

3 Methodology

3.1 System architecture

This section describes the architecture followed to solve the problem of localization and
mapping in self-driving vehicles by exploring and manipulating Lidar and IMU measure-
ments. The overall system architecture is illustrated in Fig. 1, which includes two main
components: mapping and localization. The mapping phase is responsible for creating a
global map of the environment by processing the Lidar scans (or scenes, or measurements).

Fig. 1 Presentation of the framework used in this work, which consists of two main components, mapping
and localization. Mapping is responsible for extracting the features and creating the global map. Localization
is responsible for calculating the positions

Multimedia Tools and Applications

It consists of two main steps: feature extraction and global mapping. Feature extraction is
the process of manipulating the Lidar scans to extract relevant features, remove noise, and
create a local feature map for each scan. The global mapping step is set up to create a global
map of the environment by converting all local feature maps into a body reference coordi-
nate system and then merging them all. The localization phase then calculates the position
of the vehicle based on the vehicle motion provided by the IMU and based on the results
of the mapping step. Each of the steps (and stages, components) is explained in more detail
below.

3.2 Mapping

To create a map of the environment, we use Lidar scans to represent objects in the envi-
ronment with 3D coordinates, where the accuracy and robustness of these scans to changes
in the environment are important. However, Lidar scans contain a huge amount of data
points that contain noise and irrelevant information that needs to be removed to create a
lightweight map and speed up the localization process. Below, we demonstrate our relevant
feature extraction techniques to help create the global map.

• Feature extraction: Acts as a pre-processing step, which receives data from the 3D
lidar point cloud and transforms it into usable inputs, as the huge number of point
data can especially affect performance and consume huge time for execution, which
increases the need to reduce it without losing relevant information. We processed each
lidar scan data with a series of filters; ground plane removal, downsampling of points,
clustering, and removing noises. Let us define a scan of 3D Lidar points by:

P = [p0, p1, . . . , pN] (4)

Such that
pi = [xi, yi, zi] (5)

Each scan P is processed as follows. First, the 3D Lidar point scans provide an overview
of the environment which certainly contains noise and information that we will not
examine in our architecture, such as the ground plan. Since the ground plane did not
show any hard distinguishable features that could help the matching process we remove
the ground plane to reduce time. Our algorithm for removing the ground plane is take
into consideration the points whose z-axis is above 0.1 of all points within the scan P . A
down samplingmethod was applied to reduce the cost of feature extraction. The points
are grouped into voxels (3D cube which is like pixels in images). Then, each occupied
voxel generates exactly one point by averaging all the points in it. Finally, we applied
a clustering phase to the remaining points. We tested several clustering methods to
find the best one that meets the criteria of speed and representativeness. According to
Table 1, fuzzy c-means [4] has recorded the lowest log time, which means that it takes
less time to generate cluster functions. Given its ability to handle stochastic systems,
it will be our choice in this work. To remove the noisy points and preserve the local
feature map, we used the Density-Based Spatial Clustering of Applications with Noise
(Dbscan) algorithm. We tracked features that only formed lines, where each line must
contain a minimum number of points and the distance between them must be small.
(An example of the process was illustrated in Fig. 2)

• Create global Map: It is a very important step before the main task of localization.
It is the process of creating a map of the environment based on the data collected by
the sensors (lidar scans). In our case, we transform the local feature maps resulting

Multimedia Tools and Applications

Table 1 Time consumption (mm: ss) to execute the features extraction workflow with the specified clustering
methods tested in the sequences 0001 from the Kitti data set [8]

Clustering method Time cost

Growing Neural Gas 01:24

KMeans 01:38

fuzzy c-means 00:43

Hierarchical clustering 01:07

Gaussian mixture model 00:49

Self Organizing maps 02:06

Agglomerative Clustering 01:18

Particle Swarm Optimized Clustering 00:52

from the feature extraction workflow into a reference coordinate system that unifies
the viewing angle and places each scan on its corresponding timestamp (see Fig. 3a).
furthermore, We concatenate the transformed scan in order to create the global map of
the trajectory and the environment (see Fig. 3b).

Let we note:
k ∈ [0,Mf] M = {mk} (6)

Mf number of feature points in the map, mk the feature point at position k, M contain
features of the global map. and let also define:

k ∈ [0, Nf] F t = {f t
k } (7)

Nf number of feature points in the lidar scan t , f t
k the feature point at position k in the

scan t , F t list of features at scan t which contain features of the local map at scan t.
• Data association: It is the task of finding a part of the global map that matches the

local map at scan t; that is, we search for similar points of the local map F t (local map
at scan t) with the corresponding part of the global map Mn(t) Such that n(t) is the
index of the matching global feature map. Here, a Kd-tree algorithm was used to find
the closest points to a local future map. An example of the process is given in Fig. 3c

3.3 Localization:

After executing the mapping stage. The map is well prepared for the localization phase.
Here present our contribution of the modified clustering particle filter that takes the IMU
inputs (translation and rotation) and the results of the mapping stage (global and local maps).
For simplicity, it is important to understand what the particle filter is and why we use it,
which makes it easier to explain paper contributions in depth. Particle filters are used to
correct the IMU sensor error (translation and rotation) by generating a series of particles
X = {XPari } around an initial state of the GPS system representing the candidate positions
(Fig. 4a blue dots). Each candidate is associated with a weight wPari which is uniformly
initialized. After the AV moves to the next state, the IMU computes the transformation
inside it, which is usually error-prone. Each particle followed this transformation (motion
updates see Fig. 4b)

Xt = {Xt
Pari

}, Xt
Pari

= Rt ∗ Xt−1
Pari

+ T t (8)

Multimedia Tools and Applications

Fig. 2 Example of the features extraction workflow. Here we took K-means as a clustering algorithm (for
image clarity it is recommended to zoom in the image (d))

Xt
Pari

is 4 by 4 homogeneous matrix created after the generation of the x,y coordinates and
the θ orientation uniformly, i ∈ [0, N] Such that N is the number of particles, Rt and T t

are, respectively, the rotation and translation matrices at scan t .
Moreover, the second stage in the particle filtering algorithm is the measurement

update, which aims to calculate the weights {wPari }. These weights play the role of a judge,

Multimedia Tools and Applications

Fig. 3 Illustration of the process of creating the global map of the environment

Multimedia Tools and Applications

such that a higher weight value means that the associated particle is close to the actual
position of the state. According to [29], these weights can be updated by:

wt
Pari

=
∏

p∈[0,t]
p

(
Fp | Xp,Mn(p)

)
(9)

Such that
p

(
Fp | Xp,Mn(p)

) := N
(∥
∥XpFp − Mn(p)

∥
∥ , σ

)
(10)

The product in XpFp gives the distances between the particles and features in scan p, σ
is an isotropic position uncertainty depending on the reference landmarks. n(k) is an index
of the global features associated with the kth local feature (provided by kd-tree), and N is
the normal distribution. weights are like a probability of contribution of corresponding the
particle to calculate the real position. The idea is to compare the normal curve of particle
distances to features on a global map with what we have on the corresponding local map in
each scan. The distances to features in the local map are the actual distances. Consequently,
we compare them with those of the particles. The closer the distances are, the greater the
contribution to the position calculation. The correspondence between the local and global
maps is established by the data association step (see. Fig. 4b for an illustration)

The state estimation at scanning t

post ≈
N∑

i=1

wt
Pari

Xt
Pari

(11)

Such that
N∑

i=1

wt
Pari

= 1 (12)

N is the number of particles.
The accuracy of the method depends mainly on the number of particles, the higher

the number of particles, the higher the probability of convergence to the real state. How-
ever, increasing the number of particles causes additional energy costs and increases time
consumption, which is not recommended for self-driving vehicles [37].

To speed up this process while maintaining accuracy, we proposed to choose efficiently
some relevant particles. This step should be done directly after the motion update step in
order to reduce the computational time of calculating weights and calculating positions also.
We suggest two approaches to choose those points which will be thoroughly analysed in the
next section.

• Using clustering approach: Clustering is a well-known approach to store information
in a smaller number of clustering centers. This reduces the time cost and preserves the
particle information. Let us define.

Ct = {Ct
i } (13)

i ∈ [0, Nc], Nc clusters number, Ct
i is the center cluster i at scan t

Consequently,

wt
Ci

=
∏

p∈[0,t]
p

(
Fp | Cp,Mn(p)

)
(14)

Such that

p
(
Fp | Cp,Mn(p)

) := N
(∥
∥CpFp − Mn(p)

∥
∥ , σ

) + ε (15)

Multimedia Tools and Applications

Fig. 4 Explication of the workflow of the particle filter (the images are not real. They are generated to explain
in depth the process.)

The state estimation at scan t ,N is the normal distribution

post
C ≈

Nc∑

i=1

wt
Ci

Ct
i (16)

Such that
Nc∑

i=1

wt
Ci

= 1 (17)

The K-means algorithm was chosen to perform this task regarding its convergence
capability and its ability to incorporate clusters of different shapes.

• Using sigma points approach: After the motion update step, we calculate the mean
and covariance of the particles, x and P , respectively.

Multimedia Tools and Applications

In order to get those sigma points, we need to find the minimum of these formulas:

min〈X ,w〉 c(〈X , w〉, r, P (x)) subject to ξ(〈X ,w〉, r, p(x)) = 0 (18)

χ are the sigma points, ω are the weights, r is the number of sigma points which is equal to
2L+1 and L is the dimension of x. In this paper, we chose three different methods: Van der
Merwe 2004 dissertation [37], Julier and Jeffery K. Uhlmanns [12], and the simplex method
of Phillippe M., and Dominique C. [23] and we merge their results to investigate the benefit
of all these methods.

Without diving into the theory of each of them, we present their method to distinguish the
sigma points. According to Julier et al. the points can be generated by using these formulas:

χJ [0] = x

χJ [i] = x +
(√

(L + κ)P
)

i
i = 1, . . . , L

χJ [i] = x −
(√

(L + κ)P
)

i
i = L + 1, . . . , 2L (19)

χJ is the sigma points generated, and κ is a scaling factor that can reduce high order errors.
Note that we need to find the matricial root square weather using the Cholesky method or
other. However, regarding its fastness, we choose the Cholesky decomposition.

According to Van der Merwes the points can be generated by using these formulas:

χM [0] = x

χM [i] = x +
(√

(L + λ)P
)

i
i = 1, . . . , L

χM [i] = x −
(√

(L + λ)P
)

i
i = L + 1, . . . , 2L (20)

λ = α2(L + κ) − L is a scaling parameter.α determines the spread of the sigma points
around x, and κ is a scaling factor that can reduce high order errors.

According to Phillippe M. et al the points can be generated by using these formulas:

χP [i] = x − I (i) i = 1, . . . , L + 1

I (i) = √
P Ī (i)

r (21)

Such that the vectors I
(i)
r are the columns of the matrix noted

[
Ĩ ∗
r

]
recursively defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
Ī ∗
1

] =
(
− 1√

2α
1√
2α

)
, α = p

p+1

[
Ī ∗
d

] =

⎛

⎜
⎜
⎝

0
[
Ī

(i)
d−1

] ...
1√

αd(d+1)
· · · 1√

αd(d+1)
−d√

αd(d+1)

⎞

⎟
⎟
⎠

, 2 ≤ d ≤ p (22)

Finally, we concatenate our sigma points.

χt = {[χJ , χM, χP]t } = {χt
i }

i ∈ [0, Nχ], Nχ sigma points number, χt
i sigma point of the element i at scan t

Consequently,

wt
χi

=
∏

p∈[0,t]
p

(
Fp | χp,Mn(p)

)
(23)

Multimedia Tools and Applications

Such that

p
(
Fp | χp,Mn(p)

) := N
(∥
∥χpFp − Mn(p)

∥
∥ , σ

) + ε (24)

The state estimation at scan t ,N is the normal distribution

post
χ ≈

Nχ∑

i=1

wt
χi

χ t
i (25)

Such that
Nχ∑

i=1

wt
χi

= 1 (26)

3.4 Evaluation

Our metrics included six error measurement �pos , �lat , �lon and �ang denote
the mean absolute positional, latitudinal, longitudinal, and heading errors, while
RMSEpos, RMSEang represents the corresponding root mean squared errors.

�lat =
∑n

i=1

∣
∣Xi − X′

i

∣
∣

n
�lon =

∑n
i=1

∣
∣Yi − Y ′

i

∣
∣

n

�pos =
∑n

i=1

∣
∣
∣
∣posi − pos′

i

∣
∣
∣
∣
2

n
�ang =

∑n
i=1

∣
∣θi − θ ′

i

∣
∣

n

RMSEpos =
√

∑n
i=1

∣
∣
∣
∣posi − pos′

i

∣
∣
∣
∣2
2

n
RMSEang =

√
∑n

i=1

∣
∣θi − θ ′

i

∣
∣2

n

Such that n is the key frames number, posi = [Xi, Yi] is the predicted state, pos′
i = [X′

i , Y
′
i]

is the actual state, θ is the predicted angle, θ′ actual state

4 Results

In this section, we analyze the performance of our method for locating the vehicle on the
trajectory in the short, medium, and long term, and investigate which method is more accu-
rate and efficient among the two presented in our methodology; i.e., clustering-based and
sigma-point based methods.

4.1 Experiments

We have tested our method in two benchmark data sets; Kitti [8], and Pandaset [40]. Kitti
data contain several sequences driven around the mid-size city of Karlsruhe, The vehicle was
equipped with two high-resolution colour and grey-scale video cameras. Accurate ground
truth is provided by a Velodyne laser scanner and a GPS location system. We have chosen
to test our method in different categories provided in the data set, including city, residential,
Road, Campus, and Person. This advantageous data set enables the test of various envi-
ronmental changes and investigate the performance of the vehicles in short and long-term
localization trajectories. In addition, we examined the performance of our method on a sec-
ond data set that included a complex showcase of urban driving scenarios, including steep

Multimedia Tools and Applications

Table 2 Testing the performance of the method with different numbers of cluster particles. The performance
was based on five different sequences of different categories with a total of 389 frames, and we recorded the
sum of the accuracies and time costs

Number of cluster 10 50 100

RMSE {pos} (m) 0.127 0.1479 0.552

Time cost (s) 01:25 03:53 06:42

hills, construction, heavy traffic and pedestrians, and a variety of weather and light condi-
tions in the morning, and afternoon, dusk, and evening. Pandaset vehicle was equipped also
with IMU/GPS information and Lidar, cameras measurement. The tests were conducted in
an i7 8th generation pc with 20 GB Ram. However, a GPU is recommended for this task.
We have fixed some configuration in the features extraction process, including the voxel
size (0.5 ∗ 0.5 ∗ 0.5) per voxel, the number of cluster of 100 clusters (This choice depend
mainly on the execution cost and the representation of features in the environment) and
we keep as defaults other fuzzy c-means parameters. For the DBSCAN algorithm, we have
fixed 2 points as a minimum sample to fit the lines and 1 m unit as the maximum distance
between two samples for one to be considered as in the neighbourhood of the other which
is very important parameter to choose accurately. In the localization stage, we have fixed a
10 cluster for the localization based on k-means clustering and we generate 100 particles to
run the localization tests for both approaches (clustering or sigma points). The justification
of this choice will be discussed in the next subsection. In the sigma localization method, we
set kappa=0 which gives the standard unscented filter, L = 3, α = .00001. We have run the
Mapping stage for one time to create the local and global maps.

4.2 Parameters discussion

We have analyzed the appropriate configuration to obtain better results in terms of accuracy
and time cost. Table 2 shows that, for a fixed number of 2000 particles, 10 cluster centers
recorded better results and represent a practical parameter that serves for accuracy, energy
and time cost. Furthermore, Table 3 shows that, for a cluster of 10 fixed centers, we obtained
that 100 particles are sufficient to obtain good accuracy in a reasonable time These results
justify the choice of our configuration (10-center cluster and 100 particles) and constitute
our main contribution to reduce time consumption. However, some perturbation of the accu-
racy occurs due to the initialization of the particle filter or the reduced number of center
clusters.

Table 3 Testing the performance of the method with different numbers of particles. The performance was
based on five different sequences of different categories with a total of 389 frames, and we recorded the sum
of the accuracies and time costs

Number of Particles 100 1000 2000

RMSE {pos} (m) 0.206 0.3704 0.1802

Time cost (s) 00:23 00:55 02:38

Multimedia Tools and Applications

Table 4 Accuracy and time consumption of the Localization based on the clustering in the Kitti dataset from
different categories sequences

Category Seq frames no tFeat (s) tloc(s) �pos(m) �lat (m) �lon(m) �ang(°) RMSEpos(m) RMSEang(°)

City 0001 108 00:02 00:06 0.08 0.01 0.07 0.009 0.11 0.01

Residence 0035 131 00:04 00:10 0.06 0.01 0.05 0.04 0.08 0.06

Road 0027 188 00:07 00:16 0.10 0.031 0.09 0.005 0.005 0.0037

Campus 0034 49 00:03 00:04 0.0063 0.003 0.004 0.005 0.008 0.005

Person 0053 68 00:02 00:05 0.0009 0.0007 0.0005 0.002 0.001 0.002

SUM 544 00:18 00:41 0.2472 0.0547 0.2145 0.061 0.204 0.0807

4.3 Short-term localization discussion

The first type of experiment was conducted to investigate the performance of our twomodels
(i.e., based on clustering techniques, or based on sigma points) and to test the extent to which
each is able to accurately locate the vehicle without wasting too much time and energy.
Therefore. We have distinguished a number of short Kitti and Pandaset dataset sequences
that contain several environmental changes and different trajectory shapes. The results in
Tables 4 and 5 show the accuracy of the two models in locating the vehicle within the
chosen sequences and the time consumed in each. It was shown that our models are able to
accurately determine the positions in a short computation time; 41 s to locate the vehicle
in 544 frames (105 s across all sequences) with 0.24 m average absolute positioning error,
demonstrating the effectiveness of using clustering techniques to reduce the time required
to calculate the positions. Meanwhile, the sigma point based localization used 5 s to locate
the vehicle in 544 frames (105 s across all sequences) with 0.16 m in the average absolute
positioning error which is super fast and accurate, especially for real-time applications.
Based on the mean and covariance of the particles after the motion update, the sigma points
method manages to perfectly choose the “winning” points that efficiently contribute to the
calculation of the positions. According to the analysis performed above, the localization
based on sigma points outperforms the localization based on clustering both in terms of
accuracy and speed. Therefore, it will be our choice in the remainder of this review.

Table 6 confirm our statement; a mean absolute positioning error of 0,18 m was obtained
across all sequences in the pandaset [40] reference data set over 400 frames in a 5(s) of

Table 5 Accuracy and time consumption of the Localization based on the sigma points in the Kitti dataset
from different categories sequences

Category Seq frames no tFeat (s) tloc(s) �pos(m) �lat (m) �lon(m) �ang(°) RMSEpos(m) RMSEang(°)

City 0001 108 00:02 00:01 0.054 0.013 0.05 0.01 0.067 0.011

Residence 0035 131 00:04 00:01 0.01 0.004 0.015 0.048 0.025 0.088

Road 0027 188 00:07 00:01 0.084 0.019 0.07 0.005 0.098 0.006

Campus 0034 49 00:03 00:01 0.0064 0.004 0.005 0.005 0.0097 0.005

Person 0053 68 00:02 00:01 0.00087 0.0007 0.0004 0.0012 0.001 0.0015

SUM 544 00:18 00:05 0.15527 0.0407 0.1404 0.0692 0.2007 0.1115

Multimedia Tools and Applications

Table 6 Accuracy and time consumption of the Localization based on the sigma points in the Pandaset
dataset from various sequences

Seq frames no tFeat (s) tLoc (s) �pos(m) �lat (m) �lon(m) RMSEpos(m)

100 80 00:03 00:01 0.269 0.056 0.252 0.331

109 80 00:03 00:01 0.207 0.041 0.195 0.267

117 80 00:04 00:01 0.237 0.043 0.227 0.295

139 80 00:02 00:01 0.0825 0.048 0.063 0.107

158 80 00:03 00:01 0.149 0.05 0.134 0.193

tFeat :Is the cost of time to calculate the features extraction of all the sequences
tLoc :Is the cost of time to execute the Localization process

execution time which demonstrates again the robustness and efficiency of our method to
localize the vehicle in different environmental scenarios.

We manually tested Scheafer’s method on sequence 0001 (city category) of the Kitti data
set and obtained 0.06 m absolute pose error and 0.1 degree absolute rotation error. The run
took 19 s, which was more time and energy than what we obtained in Table 7. 0.054 m
absolute pose error, 0.01 degree rotation error in 1 s of execution. We also see in Table 7
that we have such excellent rotation and translation errors that we outperform all competing
methods, which is due to the robust technique that distinguishes the sigma points from the
particles based on the mean and covariance. Scheafer et al. also record a small absolute pose
error with respect to the data association followed in that work. Extracting pole features, as
done in Scheafer et al. also significantly helps to achieve these results. However, poles, such
as trees, or even the use of walls, do not exist in all environmental settings, which especially
affects the localization process. Non-semantic feature extraction guarantees the existence of
a certain number of features that will represent the data, which ensures the continuity of the
data association workflow. Moreover, this extended work outperforms the one of Charroud.
A et al. [3] in term of accuracy and robustness where they have used Gaussian Mixture
Models (GMM) to find the global map which affects the data association process. Even
the fastness of the process, GMM with a fixed number of clusters misleads the matching
process. In contrast, we have concatenated all the features received from the local map to
ensure the reliability of the matching process.

Table 7 Evaluation of the accuracy of the strategies of Sefati et al. and A. Schaefer and of our methodology.
The results of Weng et al. and Kümmerle et al. are not directly comparable and are presented for qualitative
analysis only

Methods �pos(m) RMSEpos �lat(m) σlat(m) �lon(m) σlon(m) �ang(°) σang(°) RMSEang(°)

Kümmerle et al. [15] 0.12 — 0.07 — 0.08 — 0.33 — —

Weng et al. [39] — — — 0.082 — 0.164 — 0.329 —

Sefati et al. [30] — 0.24 — — — — — — 0.68

A. Schaefer et al. [29] 0.096 0.111 0.061 0.075 0.060 0.067 0.133 0.188 0.214

Charroud. A et al. [3] 0.12 0.141 0.059 0.09 0.08 0.05 0.043 0.078 0.057

Ours 0.077 0.085 0.0195 0.025 0.071 0.059 0.04 0.04 0.05

Multimedia Tools and Applications

Ta
bl
e
8

A
cc
ur
ac
y
ev
al
ua
tio

n
of

ou
r
m
et
ho
d
w
ith

st
at
e-
of
-a
rt
re
gi
st
ra
tio

n
m
et
ho
ds

Se
q

L
O
A
M

[4
3]

L
O
A
M

V
el
od
yn
e
[1
8]

L
eG

O
-
L
O
A
M

[3
1]

A
-
L
O
A
M

[9
]

SG
L
O
[3
2]

L
O
-N

et
[2
0]

L
O
-N

et
-M

[2
0]

O
ur
s

00
0.
78

3.
41
0

1.
34
7

0.
79
1

0.
77
5

1.
47

0.
78

0.
95

05
0.
57

1.
31
8

0.
88
7

0.
50
4

0.
59
6

1.
04

0.
62

0.
73

06
0.
65

1.
00
7

0.
87

0.
61
5

0.
48
3

0.
71

0.
55

0.
29
7

07
0.
63

1.
25
6

0.
77

0.
45
3

0.
51
5

1.
70

0.
56

0.
39
1

08
1.
12

2.
15
9

1.
33
7

1.
10
7

1.
05
9

2.
12

1.
08

1.
16

09
0.
77

1.
43
7

1.
28
2

0.
73
9

0.
73
3

1.
37

0.
77

0.
71

10
0.
79

1.
91
2

1.
67
5

1.
00
6

0.
97
7

1.
80

0.
92

0.
65

Multimedia Tools and Applications

Fig. 5 Global maps

Multimedia Tools and Applications

4.4 Long-term localization discussion

We tested our method on medium and long duration sequences from the Kitti odometry
dataset (different from the short sequences in Tables 5 and 7). The method was evaluated on
sequence 00 and sequences 05-10 over 17554 frames and 29 minutes of running. According
to Table 8, our method produced excellent results; 0.69 m in average absolute position-
ing error across all sequences. We compared our method with more advanced registration
methods, including LOAM Velodyne [43] LOAM Velodyne [18], LeGO- LOAM [31], A-
LOAM [9], SGLO [32], LO-Net [20], LO-Net-M [20], and ours. The metric used by these
methods is called trel ; the relative translation drift averaged over trajectories from 100 to
800 m. In our case, however, we took the average absolute error over all trajectories. Since
the approach used to locate the vehicle differs between us and the registration methods. The
analysis was performed approximately to provide a general inspection of the performance of
the methods. Table 8 shows that our method outperforms the other methods in 4 sequences
scenario, including trajectories of long duration. Moreover, we obtained competitive results
in other sequences. Our method records a positioning error of 1.16 m in sequence 08, a long
trajectory of 08 min :38 s driving. Again, our method proves its speed by performing the
localization task in only 22s. On another side, our method was capable to generate accu-
rately the global map of the environment for these long term trajectories which showed the
performance of our features extraction workflow (Fig. 5).

5 Conclusion

In this paper, we proposed a multi-source localization and mapping method for self-driving
vehicles based on non-semantic feature extraction. The fuzzy c-means method was used to
find patterns in LiDAR scans. The cluster centers were filtered by a DBSCAN algorithm to
remove the noises and were used to create the local map features. In addition, the global map
was created by merging local map features and transforming them into a reference coor-
dinate system which facilitates data association. The localization process was carried out
using a particle filter with modifications which is a technique to distinguish some relevant
features from the generated particles in order to speed up the calculation process and track
the trajectory positions efficiently. We have proposed two approaches to distinguish those
points; clustering-based and sigma points based approaches. sigma points has registered the
best accuracy in a small calculation time which was our choice for the next experiments and
comparisons.

Our proposed approach (sigma points) achieved competitive results in terms of accuracy.
but does so in significantly less time compared to the state-of-the-art methods evaluated on
the Kitti and pandaset benchmark dataset; 0.16 m in the average absolute positioning error
of all the short-term sequences of the Kitti dataset in 5 s of execution. Also, we obtained 0.18
m in the average absolute positioning error of all the short-term sequences of the Pandaset
dataset. We have tested extensively our method in long-term sequences and we obtained
0.69 m of the average absolute positioning error of all sequences, which demonstrates the
robustness, reliability, and efficiency of our method. Meanwhile, we have compared our
method with recent state-of-the-art works. Indeed, our method outperforms all of them
in short-term sequences, especially, the Schaefer et al. method [29] where we registered
0.077 m, while 0.096 m is registered by Schaefer’s method. Furthermore, we have obtained
competent results in the long-term sequences.

Multimedia Tools and Applications

However, some accuracy deviations occurred due to poor initialization of the particle
filter or poor choice of cluster and number of particles. Therefore, our future work will
mainly focus on finding the best initialization and investigating the parameters to find the
best configuration based on optimal control or using machine learning.

Acknowledgements The authors thank all those who contributed to this article.

Data availability statement The datasets generated during and analysed during the current study are avail-
able in the Kitti repository and Pandaset repository: http://www.cvlibs.net/datasets/kitti/, https://pandaset.
org/

Declarations

Conflict of interests and Funding All authors certify that they have no affiliation or involvement with any
organization or entity with financial or non-financial interests in the subject matter or material covered by
this manuscript.

References

1. Biber P (2003) The normal distributions transform: a new approach to laser scan matching. IEEE Int
Conf Int ll Robot Syst 3:2743–2748. https://doi.org/10.1109/iros.2003.1249285

2. Biber P (2003) The normal distributions transform: a new approach to laser scan matching. IEEE Int
Conf Int ll Robot Syst 3:2743–2748. https://doi.org/10.1109/iros.2003.1249285

3. Charroud A, Yahyaouy A, El Moutaouakil K, Onyekpe U (2022) Localisation and mapping of self-
driving vehicles based on fuzzy K-Means clustering: a Non-Semantic approach 2022 international
conference on intelligent systems and computer vision (ISCV), https://doi.org/10.1109/iscv54655.2022.
9806102

4. Daszykowski M, Walczak B (2009) Density-Based Clustering methods. Compr Chemom 2:635–654.
https://doi.org/10.1016/B978-044452701-1.00067-3

5. Dawen X, Zhang M, Yan X, Bai Y, Zheng Y, Li Y, Li H (2020) A distributed WND-LSTM model on
mapreduce for Short-Term traffic flow prediction. Neural Comput Applic 33(7):2393–2410. https://doi.
org/10.1007/s00521-020-05076-2

6. Du S, Xu Y, Wan T, Hu H, Zhang S, Xu G, Zhang X (2017) Robust iterative closest point algorithm
based on global reference point for rotation invariant registration. PLoS One 12:1–14. https://doi.org/10.
1371/journal.pone.0188039

7. Gálvez-López D, Tardós JD (2012) Bags of binary words for fast place recognition in image sequences.
IEEE Trans Robot 28:1188–1197. https://doi.org/10.1109/TRO.2012.2197158

8. Geiger A, Lenz P, Stiller C, Urtasun R (2013) Vision meets robotics: the KITTI dataset. Int J Robotics
Res Int J Rob Res, pp 1–6

9. HKUST-Aerial-Robotics (2022) HKUST-Aerial-Robotics/A-LOAM: advanced implementation of loam.
Github, Accessed 8 August, https://github.com/HKUST-Aerial-Robotics/A-LOAM

10. Huang X, Mei G, Zhang J, Abbas R (2021) A comprehensive survey on point cloud registration, pp 1–17
11. Huang X, Zhang J, Wu Q, Fan L, Yuan C (2018) A coarse-to-fine algorithm for matching and registration

in 3d cross-source point clouds. IEEE Trans Circuits Syst Video Technol 28:2965–2977. https://doi.org/
10.1109/TCSVT.2017.2730232

12. Julier SJ (1997) Uhlmann, Jeffrey A New Extension of the Kalman Filter to Nonlinear Systems. Proc.
SPIE 3068, signal processing, sensor fusion, and target recognition VI, 182 (28 July 1997)

13. Karaim M, Elsheikh M, Noureldin A (2018) GNSS Error sources. Multifunct Oper Appl GPS. https://
doi.org/10.5772/intechopen.75493

14. Kim D, Chung T, Yi K (2015) Lane map building and localization for automated driving using 2D laser
rangefinder. 2015 IEEE Intell Veh Symp, pp 680–685. https://doi.org/10.1109/IVS.2015.7225763

15. Kummerle J, Sons M, Poggenhans F, Kuhner T, Lauer M, Stiller C (2019) Accurate and efficient self-
localization on roads using basic geometric primitives. Proc - IEEE Int Conf Robot Autom 2019-May,
pp 5965–5971, https://doi.org/10.1109/ICRA.2019.8793497

16. Künsch HR (2013) Particle filters. Bernoulli, pp 19, https://doi.org/10.3150/12-BEJSP07

http://www.cvlibs.net/datasets/kitti/
https://pandaset.org/
https://pandaset.org/
https://doi.org/10.1109/iros.2003.1249285
https://doi.org/10.1109/iros.2003.1249285
https://doi.org/10.1109/iscv54655.2022.9806102
https://doi.org/10.1109/iscv54655.2022.9806102
https://doi.org/10.1016/B978-044452701-1.00067-3
https://doi.org/10.1007/s00521-020-05076-2
https://doi.org/10.1007/s00521-020-05076-2
https://doi.org/10.1371/journal.pone.0188039
https://doi.org/10.1371/journal.pone.0188039
https://doi.org/10.1109/TRO.2012.2197158
https://github.com/HKUST-Aerial-Robotics/A-LOAM
https://doi.org/10.1109/TCSVT.2017.2730232
https://doi.org/10.1109/TCSVT.2017.2730232
https://doi.org/10.5772/intechopen.75493
https://doi.org/10.5772/intechopen.75493
https://doi.org/10.1109/IVS.2015.7225763
https://doi.org/10.1109/ICRA.2019.8793497
https://doi.org/10.3150/12-BEJSP07

Multimedia Tools and Applications

17. Kuutti S, Fallah S, Katsaros K, Dianati M, Mccullough F, Mouzakitis A (2018) A survey of the state-of-
the-art localization techniques and their potentials for autonomous vehicle applications. IEEE Internet
Things J 5:829–846. https://doi.org/10.1109/JIOT.2018.2812300

18. Laboshinl (2022) Laboshinl/loam velodyne. GitHub. Accessed 8, August. https://github.com/laboshinl/
loam velodyne

19. Levinson J, Montemerlo M, Thrun S (2007) Map-based precision vehicle localization in urban
environments. Robotics: Sci Syst III, https://doi.org/10.15607/rss.2007.iii.016

20. Li Q, Chen S, Wang C, Li X, Wen C, Cheng M (2019) LO-Net: deep realtime Lidar odometry. In: Proc
IEEE Conf Comput Vis Pattern Recognit, pp 8473–8482

21. Liu Z, Zhang F (2021) BALM: bundle adjustment for lidar mapping. IEEE Robot Autom Lett 6:3184–
3191. https://doi.org/10.1109/LRA.2021.3062815

22. Lu W, Wan G, Zhou Y, Fu X, Yuan P, Song S (2019) DeepICP: an end-to-end deep neural network for
point cloud registration. Proc IEEE Int Conf Comput Vis 2019-Octob, pp 12–21. https://doi.org/10.1109/
ICCV.2019.00010

23. Moireau P, Dominique C (2010) Reduced-order unscented kalman filtering with application to param-
eter identification in large-dimensional systems. ESAIM Cont, Optimisation Calculus of Variations
17(2):380–405. https://doi.org/10.1051/cocv/2010006

24. Montiel JMM, Mur-Arta R, Tardos JD (2015) ORB-SLAM: a versatile and accurate monocular. IEEE
Trans Robot 31:1147–1163

25. Mur-Artal R, Tardos JD (2017) ORB-SLAM2: an open-source SLAM system for monocular, stereo, and
RGB-D cameras. IEEE Trans Robot 33:1255–1262. https://doi.org/10.1109/TRO.2017.2705103

26. Nadav DYM, Maron H, Lipman Y (2017) DS++: a flexible, scalable and provably tight relaxation for
matching problems. ACM Trans Graph, pp 36. https://doi.org/10.1145/3130800.3130826

27. Nerem RS, Larson KM (2001) Global positioning system, theory and practice 5th edition. https://doi.
org/10.1029/01eo00224

28. Onyekpe U, Palade V, Herath A, Kanarachos S, Fitzpatrick ME (2021) WhONet: wheel odometry neural
network for vehicular localisation in GNSS-deprived environments. Eng Appl Artif Intell, pp 105. https://
doi.org/10.1016/j.engappai.2021.104421

29. Schaefer A, Büscher D., Vertens J, Luft L, Burgard W (2021) Long-term vehicle localization in urban
environments based on pole landmarks extracted from 3-D lidar scans. Rob Auton Syst 136:103709.
https://doi.org/10.1016/j.robot.2020.103709

30. Sefati M, Daum M, Sondermann B, Kreiskother KD, Kampker A (2017) Improving vehicle localization
using semantic and pole-like landmarks. IEEE Intell Veh Symp Proc, pp 13–19, https://doi.org/10.1109/
IVS.2017.7995692

31. Shan T, Brendan E (2018) Lego-loam, : lightweight and ground-optimized lidar odometry and mapping
on variable terrain 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS),
https://doi.org/10.1109/iros.2018.8594299

32. Shuang L, Cao Z, Wang C, Yu J, Wang S (2021) A novel sparse geometric 3-d lidar odometry approach.
IEEE Syst J 15(1):1390–1400. https://doi.org/10.1109/jsyst.2020.2995727

33. Sjafrie H (2013) Introduction to self-driving vehicle technology. Bernoulli 19:1391–1403. https://doi.
org/10.3150/12-BEJSP07

34. Sjafrie H (2019) Introduction to self-driving vehicle technology (1st edn.) Chapman and hall/CRC.
https://doi.org/10.1201/9780429316777

35. Team CARLA (2022) Carla CARLA simulator. 9 Accessed August, https://carla.org/
36. Thrun S (2002) Probabilistic robotics. Commun ACM 45:52–57. https://doi.org/10.1145/504729.504754
37. Van Der Merwe R, Wan R (2004) Sigma point Kalman filters for probabilistic inference in dynamic

state-space models. PhD thesis, OGI school of science & engineering, oregon health & science university
USA

38. Wael F (2021) Real-Time Autonomous vehicle localization based on particle and unscented kalman
filters. J Cont, Autom Electric Syst 32(2):309–25. https://doi.org/10.1007/s40313-020-00666-w

39. Weng L, Yang M, Guo L, Wang B, Wang C (2019) Pole-based real-time localization for autonomous
driving in congested urban scenarios. 2018. IEEE Int Conf Real-Time Comput Robot RCAR 2018:96–
101. https://doi.org/10.1109/RCAR.2018.8621688

40. Xiao P, Shao Z, Hao S, Zhang Z, Chai X, Jiao J, Li Z, Wu J, Sun K, Jiang K, Wang Y, Yang D (2021)
Pandaset: advanced sensor suite dataset for autonomous driving. IEEE Conf Intell Transp Syst Proc,
ITSC. 2021-September, pp 3095–3101, https://doi.org/10.1109/ITSC48978.2021.9565009

41. Yuan W, Eckart B, Kim K, Jampani V, Fox D, Kautz J (2020) DeepGMR: learning latent gaussian
mixture models for registration. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect
Notes Bioinformatics), 12350 LNCS, pp 733–750. https://doi.org/10.1007/978-3-030-58558-7 43.

https://doi.org/10.1109/JIOT.2018.2812300
https://github.com/laboshinl/loam_velodyne
https://github.com/laboshinl/loam_velodyne
https://doi.org/10.15607/rss.2007.iii.016
https://doi.org/10.1109/LRA.2021.3062815
https://doi.org/10.1109/ICCV.2019.00010
https://doi.org/10.1109/ICCV.2019.00010
https://doi.org/10.1051/cocv/2010006
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1145/3130800.3130826
https://doi.org/10.1029/01eo00224
https://doi.org/10.1029/01eo00224
https://doi.org/10.1016/j.engappai.2021.104421
https://doi.org/10.1016/j.engappai.2021.104421
https://doi.org/10.1016/j.robot.2020.103709
https://doi.org/10.1109/IVS.2017.7995692
https://doi.org/10.1109/IVS.2017.7995692
https://doi.org/10.1109/iros.2018.8594299
https://doi.org/10.1109/jsyst.2020.2995727
https://doi.org/10.3150/12-BEJSP07
https://doi.org/10.3150/12-BEJSP07
https://doi.org/10.1201/9780429316777
https://carla.org/
https://doi.org/10.1145/504729.504754
https://doi.org/10.1007/s40313-020-00666-w
https://doi.org/10.1109/RCAR.2018.8621688
https://doi.org/10.1109/ITSC48978.2021.9565009
https://doi.org/10.1007/978-3-030-58558-7_43.

Multimedia Tools and Applications

42. Yurtsever E, Lambert J, Carballo A, Takeda K (2020) A survey of autonomous driving: common prac-
tices and emerging technologies. IEEE Access 8:58443–58469. https://doi.org/10.1109/ACCESS.2020.
2983149

43. Zhang J, Singh S (2017) Low-drift and real-time lidar odometry and mapping. Auton Robots 41:401–
416. https://doi.org/10.1007/s10514-016-9548-2

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Affiliations

Anas Charroud1 ·Karim El Moutaouakil2 ·Ali Yahyaouy3

Karim El Moutaouakil
karim.elmoutaouakil@usmba.ac.ma

Ali Yahyaouy
ayahyaouy@yahoo.fr

1 Engineering Science Laboratory (ESL), FST Fes, University Sidi Mohamed Ben Abdellah Morocco,
Fes, Morocco

2 Engineering Science Laboratory (ESL), FPT Taza, University Sidi Mohamed Ben Abdellah Morocco,
Taza, Morocco

3 Computer Science, Signals, Automatics and Cognitivism Laboratory, FSDM, USMBA, Fes, 30050,
Morocco

https://doi.org/10.1109/ACCESS.2020.2983149
https://doi.org/10.1109/ACCESS.2020.2983149
https://doi.org/10.1007/s10514-016-9548-2
http://orcid.org/0000-0002-6425-3096
mailto: karim.elmoutaouakil@usmba.ac.ma
mailto: ayahyaouy@yahoo.fr

	Fast and accurate localization and mapping method for self-driving vehicles based on a modified clustering particle filter
	Abstract
	Introduction
	Related work
	Methodology
	System architecture
	Mapping
	Localization:
	Evaluation

	Results
	Experiments
	Parameters discussion
	Short-term localization discussion
	Long-term localization discussion

	Conclusion
	Declarations
	References
	Affiliations

