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Abstract: In recent years, unmanned aerial vehicles (UAVs) have been applied in many fields owing
to their mature flight control technology and easy-to-operate characteristics. No doubt, these UAV-
related applications rely heavily on location information provided by the positioning system. Most
UAVs nowadays use a global navigation satellite system (GNSS) to obtain location information.
However, this outside-in 3rd party positioning system is particularly susceptible to environmental
interference and cannot be used in indoor environments, which limits the application diversity of
UAVs. To deal with this problem, in this paper, a stereo-based visual simultaneous localization
and mapping technology (vSLAM) is applied. The presented vSLAM algorithm fuses onboard
inertial measurement unit (IMU) information to further solve the navigation problem in an unknown
environment without the use of a GNSS signal and provides reliable localization information. The
overall visual positioning system is based on the stereo parallel tracking and mapping architecture
(S-PTAM). However, experiments found that the feature-matching threshold has a significant impact
on positioning accuracy. Selection of the threshold is based on the Hamming distance without any
physical meaning, which makes the threshold quite difficult to set manually. Therefore, this work
develops an online adaptive matching threshold according to the keyframe poses. Experiments show
that the developed adaptive matching threshold improves positioning accuracy. Since the attitude
calculation of the IMU is carried out based on the Mahony complementary filter, the difference
between the measured acceleration and the gravity is used as the metric to online tune the gain
value dynamically, which can improve the accuracy of attitude estimation under aggressive motions.
Moreover, a static state detection algorithm based on the moving window method and measured
acceleration is proposed as well to accurately calculate the conversion mechanism between the
vSLAM system and the IMU information; this initialization mechanism can help IMU provide a
better initial guess for the bundle adjustment algorithm (BA) in the tracking thread. Finally, a
performance evaluation of the proposed algorithm is conducted by the popular EuRoC dataset. All
the experimental results show that the developed online adaptive parameter tuning algorithm can
effectively improve the vSLAM accuracy and robustness.

Keywords: adaptive tuning; GPS-denied environments; vSLAM; stereo vision; inertial measurement
unit (IMU); mahony complementary filter; S-PTAM

1. Introduction

Due to high flexibility and excellent maneuverability, UAVs have become one of the
most popular aerial vehicle platforms over the past few years. Moreover, the outdoor
applications of UAVs are well known to the public, while this paper focuses on visual
positioning in GPS-denied environments. Therefore, several indoor applications of UAVs
are particularly illustrated. For example, UAVs can provide appropriate assistance to
humans for those high-risk missions such as rescue operations and indoor equipment
maintenance in nuclear power plants [1]. Besides, UAVs can also effectively enhance
human productivity, such as being used for intelligent warehousing management in large
factories or plant care and monitoring in greenhouses [2]. Military indoor inspection, indoor
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photography and scenes scanning for construction purposes are also common indoor
applications for UAVs. In addition, with the booming development of autonomous UAV
applications, the underlying technologies that UAVs heavily rely on, such as localization
and attitude estimation, have gradually attracted the attention of scholars and have become
a research hotspot.

UAVs can obtain location and attitude information through many different types of
sensors. Depending on the signal source, the sensors can be classified into outside-in
types, such as GNSS, VICON (a motion capture system), laser scanner, ultra-wideband
(UWB), Wi-Fi, and so on. However, the information from this type of sensor cannot
be acquired without the pre-set external facilities. As a consequence, these outside-in
localization methods cannot work properly in unexplored environments. On the contrary,
inside-out types, such as onboard cameras, radars, light detection and ranging (LiDAR),
etc., can receive information independently without any 3rd equipment. In terms of
computational power requirements, even though using inside-out type sensors is more
costly to sense the ego-motion of UAVs, they can deal with the autonomous navigation
problem in unknown or even dynamic environments compared to outside-in type sensors
and have significant advantages in hardware cost considerations as well. Moreover, the
inside-out perception strategy offers UAVs the ability to sense the environment, also known
as mapping. The mapping capability is essential for real-time obstacle avoidance, trajectory
planning, and other related autonomous functions. All in all, it can be inferred that SLAM
technology based on the inside-out type sensors will play a pivotal role in the development
of autonomous UAVs under GPS-denied environments.

The vSLAM is favored by UAV developers for its lightweight and low-power con-
sumption camera sensors. Moreover, rich color information not only makes the map more
valuable but also has excellent potential for removing dynamic obstacles [3–6]. It is also
worth mentioning that the well-known open-source monocular SLAM solutions based
on static visual features (indirect methods) are parallel tracking and mapping (PTAM) [7]
and ORB-SLAM (1–2) [8,9], while large-scale direct monocular SLAM (LSD-SLAM) [10],
semi-direct visual odometry (SVO) [11] and direct sparse odometry (DSO) [12] are based on
direct methods. However, using only a monocular camera for positioning inevitably causes
scale ambiguity and further makes it difficult to directly provide valid information. There-
fore, in practice, additional sensors are needed to compensate for the scale, as in [13,14],
where this problem is addressed by using radar and barometer, respectively. Besides, with
the popularity of micro-electro-mechanical-system (MEMS), integration between vision
and IMU, also known as visual-inertial odometry (VIO), such as monocular visual-inertial
system (VINS-Mono) [15] and robust visual inertial odometry (ROVIO) [16], has received
high attention in recent years, and has been applied in many novel fields like augmented re-
ality (AR) and virtual reality (VR). Unlike monocular cameras, RGB-D cameras can directly
access scale and depth information through structured light or Time-of-Flight (ToF). The
associated famous vSLAM open-source solutions include ElasticFusion [17], dense visual
odometry (DVO) [18], RGB-D SLAM v2 [19], and KinectFusion [20]. Although RGB-D cam-
eras have a strong ability to build high-dense maps, their weight, size, and price will bring
a considerable burden to UAVs compared to general RGB cameras. The short measurement
distance by an RGB-D sensor also restricts the size applicability of the operating environ-
ment. Thus, stereo cameras with lightweight, low cost, low-power consumption, and long
measurement distance are obviously more suitable for UAV perceptions. [21] proposes
the stereo multi-state constraint Kalman filter (S-MSCKF), which fuses stereo vision and
IMU in a tightly coupled manner to construct a highly robust and real-time localization
system, and also solves the problem of large state dimension in the traditional filter-based
vSLAM architecture. Based on the parallel multi-threading architecture proposed in [7],
Pire et al. divide the overall system into front-end tracking and back-end optimization
threads performed in parallel, thereby improving time cost and positioning accuracy [22].

Although vSLAM is capable of achieving effective exploration in a GPS-denied en-
vironment, the associated algorithms involve a considerable number of parameters or
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thresholds. In general, these parameters are not only fixed after system startup but also
mostly lack intuitive physical meaning, making it difficult to have a well-founded manual
adjustment. For UAVs with aggressive motions or in complex operating environments,
these parameters require instant online updates to keep the system in optimal condition.
For the above reasons, the concept of dynamic threshold is introduced into the field of
vSLAM, such as dynamically adjusting threshold value [23], which controls the selection of
keyframe based on field-of-view (FoV) repetition rate. Meanwhile, according to the results
of several experiments, it is found that the selection of feature matching threshold has a
dominant effect on positioning accuracy. Therefore, how to effectively select the matching
threshold online according to different situations will be one of the key discussion issues in
this paper.

In fact, not only the vSLAM system has the requirement of online parameter adjust-
ment, but also the Mahony complementary filter [24] for UAVs attitude estimations. As the
UAVs are under aggressive motions, the measured acceleration varies drastically, which
will cause biased attitude estimation. The biased estimates not only deteriorate the basic
flight stability of UAVs, but also lower the vSLAM accuracy. Therefore, this paper proposes
to adjust the Kp online in Mahony complementary filter to further improve the attitude
estimation accuracy, not only to achieve better flight performance of UAVs, but also to
prepare for the information fusion with the vSLAM system. The following summarizes the
three major problems that are going to be addressed in this paper:

1. Online adaptive parameter tuning for feature matching threshold, which lacks physi-
cal meaning.

2. Online adaptive Kp gain adjustment for Mahony complementary filter to resist ag-
gressive motions.

3. Fusion and motion compensation loop design between vSLAM and IMU.

Following the above-mentioned issues, the further proposed online adaptive parame-
ter tuning algorithm and motion compensation loop in this paper has the following three
primary contributions.

1. The matching threshold and the Kp gain, which are not easy to determine via manual
tuning, are adjusted adaptively according to the UAVs’ flight status.

2. The proposed online adaptive parameter tuning algorithm can effectively improve
the pose estimation accuracy and can enhance frame per second (FPS) by up to 70%
and 29%, respectively, in the EuRoC dataset.

3. The developed motion compensation loop subroutine can effectively utilize IMU in-
formation to improve the anti-shading robustness of the original vSLAM performance.
Moreover, incorporating the presented online adaptive parameter tuning algorithm
can further improve the robustness to a higher level.

2. The Framework of the vSLAM System

This paper develops a proposed online adaptive parameter tuning algorithm based on
the S-PTAM [25], whose performance is comparable to the state-of-the-art ORB-SLAM2 [9]
and has better accuracy than stereo large-scale direct SLAM (S-LSD-SLAM) [26]. The most
significant feature of S-PTAM is that the overall system involves two independent threads,
i.e., the tracking thread and the mapping thread. The former mainly performs real-time
online localization, and the latter is responsible for local map optimization. In order to
introduce the framework of the proposed algorithm, it is essential to briefly explain several
important concepts in these threads and the settings adopted in this paper.

2.1. Coordinate Setup

EuRoC [27] dataset is used for the final algorithm validation. The euRoC dataset not
only provides stereo image sequences and IMU measurements but also the relative pose
relationships between sensors and the ground truth about 6 degrees of freedom (DoF) pose,
which will be used as a reference in this paper. More details about this dataset can be
accessed in the “Data Availability Statement” section at the end of this paper. In order to
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facilitate the comparison of results, this paper refers to its coordinate settings. The whole
coordinates system contains a left camera frame (C), right camera frame (Cright), body frame
(B), world frame (W), and navigation frame (S). Both camera frames take the front shooting
direction as the z-axis, while the right and bottom of the shooting direction as the x-axis
and y-axis, respectively. The optical center of the camera is taken as the origin. The body
frame is the same as the z-axis parallel to the front shooting direction but different from the
camera frames; the upper and right sides of the shooting direction are the x-axis and the
y-axis. The world frame whose z-axis is parallel to gravity is defined by instruments that
provide ground truth poses, such as the Vicon tracking system or Leica MS50. In order to
show the definition of all frames more clearly, Figure 1 is provided to help to understand.
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Figure 1. Coordinate setup: (a) Illustration of coordinate setup on UAV (modify from [27]); (b) Illus-
tration of world frame and body frame; (c) Illustration of world frame, right camera frame, and left
camera frame.

It must be noted that the vSLAM system does not know any information about the
world frame during the positioning process, which means that the world frame cannot
be used as the reference frame to describe the pose, so it is necessary to introduce the
navigation frame. In this paper, the first left camera frame, after activating the vSLAM
system, is defined as the navigation frame, and all subsequent positioning information
is described as the left camera frame with respect to the navigation frame, as shown in
Figure 2.
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2.2. Keyframe Selection

The current tracking frame is treated as a keyframe as long as it meets the keyframe
selection criteria. It is worth mentioning that the core strategy of keyframe selection is to
check whether the whole map can provide enough feature points for the current tracking
frame to match. S-PTAM in [25] selects the keyframe that has the most covisible points
with the current tracking frame and then takes the number of map points observed by
this keyframe as the reference. When the number of map points matched with the current
tracking frame is less than half of the reference or less than twenty, the tracking frame is
considered a keyframe. In short, the keyframe observes more places that have not been
explored before, as shown in Figure 3.
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2.3. Tracking Thread

S-PTAM [25] will use the feature matching information between keyframes and map
points to maintain a covisibility relationship to manage the situation that each map point
observed by multiple keyframes, as shown in Figure 4.
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By searching for keyframes that have a covisibility relationship with the previous
tracking frame, the map points that may be observed at that moment can be quickly
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predicted from the global map, namely the submap. Then, the initial guess of the left
camera pose can be predicted by the constant velocity motion model, which can combine
with frustum culling to further remove the map points that cannot be seen in the submap,
and further obtain the local map. Thereafter, matching features between the stereo image
at the moment and the local map are conducted. Finally, according to the matching result,
BA is applied to obtain the optimal pose, which takes the output of the constant velocity
motion model as the initial guess. The overall tracking thread is to repeat the above steps
continuously. The associated detailed flowchart is summarized in Figure 5.
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There are two noteworthy points for the aforementioned algorithm flow chart:

• The output of the constant velocity motion model may be a weak initial guess, es-
pecially when UAVs are in aggressive motions such as sharp turnings or lost image
information.

• The optimization of the BA is highly dependent on the accuracy of feature matching.

In other words, the initial guess and the outliers of the matching pair must be handled
carefully during the development process. For the former, this paper will obtain a more
reliable value by using IMU information, which will be explained clearly in Sections 4
and 5. First of all, let’s introduce feature matching and BA in the following section.

2.4. Feature Extraction and Matching

Before feature matching, feature extraction is performed on the stereo images to find
the 2D static feature points, which consist of two parts, key points and descriptors. It
is worth mentioning that the key points cannot be matched directly, while the further
extracted descriptors allow the key points have the ability to describe the surrounding
areas, which makes it possible to perform feature matching. In this paper, the Shi-Tomasi
corner detection algorithm [28] proposed by Jianbo and Tomasi is used for the detection of
the key point, while binary robust independent elementary features (BRIEF) [29] is used for
the descriptors extraction. Figure 6. shows the key point detection results for the EuRoC
dataset. Examining Figure 6b, it is obvious that in the low-illuminated area, fewer key
points will be detected, which may further lead to positioning divergence or drift.
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Figure 6. The implementation of the Shi-Tomasi corner detector: (a) Detection results in a well-
illuminated environment; (b) Detection results in a low-illuminated environment.

The BRIEF descriptor is a 256-bit binary vector, therefore, the Hamming distance is
adopted to evaluate the feature similarity. For example, if there are two binary vectors,
such as 10001 and 01011, with three different bits in the same position between them, then
the Hamming distance is defined as three. As a result, the larger the Hamming distance,
the lower the similarity of the two vectors. Following the above description, in this paper,
each 3D map point on the local map is checked against all the feature points on the current
stereo images by the brute-force feature matching algorithm, further matching those with
the minimum Hamming distance and below the matching threshold. The illustration of the
overall matching algorithm is shown in Figure 7, while Figure 8 shows the result of feature
matching in the EuRoC dataset. At the same time, since stereo rectification is performed
in advance, the ideal matching pairs can be guaranteed to have close v values, which can
be used as a physical constraint to preliminarily filter out the extreme outliers. However,
as illustrated in Figure 8, although this strong matching constraint can remove most of
the outliers, certain mismatching pairs remain inevitable, as shown by the pink lines in
Figure 8. Therefore, the BA algorithm, which is susceptible to mismatching, must introduce
an additional mechanism to maintain the pose estimation accuracy. The related details will
be presented in the next section.
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2.5. Bundle Adjustment

Before constructing the BA cost function, the camera model must be established first.
The pinhole model is often used to describe the conversion mechanism between the camera
frame and the pixel frame. The projection can be expressed as:[

u
v

]
=

1
s

[
fx 0 cu
0 fy cv

]([ C
RR t
0 1

][
pR

1

])
1:3

, h
(

C
RT, pR

)
, (1)

where u, v are pixel coordinate values, while fx, fy are focal lengths (in pixels) in the u and
v directions, respectively. cu and cv are the corresponding principal points. C

RR and t are the
rotation matrix and translation vector, respectively, for the reference frame (R) with respect
to the camera frame (C), pR is the map point position represented in the reference frame, s
is the scale factor, the subscript (·)1:3 means to take the first three values of the vector, and
C
RT is a transform matrix that can be written as:

C
RT =

[ C
RR t
0 1

]
∈ SE(3), (2)

In essence, the BA algorithm is to solve for the optimal camera poses and map point
positions by minimizing the re-projection error and its cost function can be expressed as
Equation (3).

argmin
C
S T j,est pS

i,est

J =
m

∑
k=1

∥∥∥∥[uk
vk

]
− h
(

C
S T j,est, pS

i,est

)∥∥∥∥2

(3)

where C
S T j,est is the transform matrix for the navigation frame with respect to the jth camera

frame, pS
i,est is the map point position represented in the navigation frame, and uk, vk are

the pixel value on the jth camera which match to the map point pS
i,est. And re-projection

error can be defined as:

ek =

[
uk
vk

]
− h
(

C
S T j,est, pS

i,est

)
, (4)

where ek ∈ R2×1. Substitute Equation (4) into Equation (3) and convert it into a vector form.

J = eT
reere, (5)

where ere can be written as:

ere =

e1
...

em

 ∈ R2m×1, (6)
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After defining the cost function, the derivatives of the state, i.e., camera poses C
S T j,est

and map points, pS
i,est must be determined in order to construct the Jacobian matrix of

ere that will be used in the optimization procedure. However, it is worth noting that the
rotating matrix itself has six constraints, that is, the L2-norm of each column and row must
equal 1. In other words, it must guarantee that these constraints always hold during each
iteration of the optimization, which will not only make the process difficult to perform but
also increase the time spent. Fortunately, by introducing Lie algebra [30], this problem can
be solved perfectly.

Firstly, define a small pose perturbation as shown in Equation (7).

∆Tj,est =

[
∆R ∆t
0 1

]
∈ SE(3), (7)

Equation (7) can be written in the form of Lie algebra by logarithmic mapping, shown
as follows.

ξ j,est =

[
ρ
ϕ

]
=
(
ln
(
∆Tj,est

))∨SE3 ∈ se(3), (8)

where ρ ∈ R3×1, ϕ ∈ R3×1, and (·)∨SE is defined as:


0 −a6 a5 a1
a6 0 −a4 a2
−a5 a4 0 a3

0 0 0 0


∨SE3

=



a1
a2
a3
a4
a5
a6

, (9)

Alternatively, Equation (8) can be written as Equation (10) by exponential mapping.

∆Tj,est = exp
(

ξ
∧SE3
j,est

)
, (10)

where (·)∧SE3 is the inverse operation of Equation (9) and can be defined as:

a1
a2
a3
a4
a5
a6



∧SE3

=


0 −a6 a5 a1
a6 0 −a4 a2
−a5 a4 0 a3

0 0 0 0

, (11)

An additional similar marker (·)∧SO3 must be introduced, whose definition is shown
in Equation (12), and both (·)∧SE3 (·)∧SO3 will be used in the subsequent derivation.a1

a2
a3

∧SO3

=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

, (12)

Then, the derivative of the re-projection error for small pose perturbation (represented
as the Lie algebra) can be obtained by the chain rule.

∂ek
∂ξ j,est

=
∂ek

∂pC
i,est

∂pC
i,est

∂ξ j,est
, (13)
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where pC
i,est is defined as:

pC
i,est =

(
C
S T j,est

[
pS

i,est
1

])
1:3

= C
S R j,estpS

i,est + tj,est, (14)

Therefore, according to Equations (1) and (14), the first term ∂ek/∂pC
i,est in Equation

(13) can be derived as follows.

∂ek

∂pC
i,est

=

∂

([
uk
vk

]
− h
(

Tj,est, pS
i,est

))
∂pC

i,est
= −


fx

pC
i,est,z

0
− fx ·pC

i,est,x

(pC
i,est,z)

2

0 fy

pC
i,est,z

− fy ·pC
i,est,y

(pC
i,est,z)

2

, (15)

where pC
i,est =

[
pC

i,est,x pC
i,est,y pC

i,est,z

]T
, and the scale factor s is equal to pC

i,est,z. Next, the

left perturbation model will be introduced in order to obtain the second term ∂pC
i,est/∂ξ j,est

in Equation (13), which is the derivative of Lie algebra.

∂pC
i,est

∂ξ j,est
=

∂

∆Tj,est
C
S T j,est

 pS
i,est
1


1:3

∂
[

ρT ϕT
]T =

∂

exp(ξ∧SE3)C
S T j,est

 pS
i,est
1


1:3

∂
[

ρT ϕT
]T

≈
∂

(I+ξ∧SE3)

 C
S R j,est tj,est

0 1

 pS
i,est
1


1:3

∂
[

ρT ϕT
]T

=

∂

[ ϕ∧SO3 ρ
0 0

] C
S R j,estpS

i,est + tj,est

1


1:3

∂
[

ρT ϕT
]T

=
∂(ϕ∧SO3(C

S R j,estpS
i,est+tj,est)+ρ)

∂
[

ρT ϕT
]T

=
∂
(
−(C

S R j,estpS
i,est+tj,est)

∧SO3ϕ+ρ
)

∂
[

ρT ϕT
]T =

[
I −

(
pC

i,est

)∧SO3
]

(16)

The derivative of the re-projection error with respect to the pose is obtained by substi-
tuting Equations (15) and (16) into Equation (13), which yields

∂ek
∂ξ j,est

= −


fx

pC
i,est,z

0
− fx ·pC

i,est,x

(pC
i,est,z)

2

0 fy

pC
i,est,z

− fy ·pC
i,est,y

(pC
i,est,z)

2

[I −
(

pC
i,est

)∧SO3
]
∈ R2×6, (17)

The derivative of the re-projection error with respect to the map point can be obtained
by using the chain rule again, which gives

∂ek

∂pS
i,est

=
∂ek

∂pC
i,est

∂pC
i,est

∂pS
i,est

, (18)

It is worth noting that the first term ∂ek/∂pC
i,est of Equation (18) has been derived from

Equation (15). Therefore, only the second term ∂pC
i,est/∂pS

i,est needs to be derived. This
result can be obtained directly from Equation (14), as shown in the following.

∂pC
i,est

∂pS
i,est

=
∂
(

C
S R j,est · pS

i,est + tj,est

)
pS

i,est
= C

S R j,est, (19)
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Substituting Equations (15) and (19) into Equation (18) yields

∂ek

∂pS
i,est

= −


fx

pC
i,est,z

0
− fx ·pC

i,est,x

(pC
i,est,z)

2

0 fy

pC
i,est,z

− fy ·pC
i,est,y

(pC
i,est,z)

2

C
S R j,est ∈ R2×3, (20)

According to Equations (17) and (20), the Jacobian matrix of ere can be constructed by

Jere
=


∂e1

∂pS
1,est
· · · ∂e1

∂pS
i,est

∂e1
∂ξ1,est

· · · ∂e1
∂ξ j,est

...
. . .

...
...

. . .
...

∂em
∂pS

1,est
· · · ∂em

∂pS
i,est

∂em
∂ξ1,est

· · · ∂e1
∂ξ j,est

 ∈ R(2m)×(3i+6j), (21)

Based on the Jacobian matrix Equation (21), the increment of state can be solved by
applying Levenberg–Marquardt algorithm (LM) to further obtain the optimal camera poses
and map point positions. That is

∆x = −
(

JT
ere

Jere
+ λI

)−1(
JT

ere
ere

)
, (22)

where ∆x is defined as:
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In each optimization iteration, the state will be continuously updated according to
Equation (24) until the increment ∆x is small enough to stop. Moreover, the termination
condition applied in this paper is that the root means square of ∆x is less than 10−9.

pS
i′ ,est = pS

i′ ,est + ∆pS
i′ , i′ ∈ [1, i]

C
S T j′ ,est = exp

(
ξ̂SE3

j′

)
C
S T j′ ,est, j′ ∈ [1, j]

(24)

However, it is worth noting that BA is sensitive to outliers, namely feature mismatch-
ing. To solve this issue, some strategies for filtering outliers must be designed. In this paper,
the Huber loss will be used to deal with this problem.

Different from the square error expressed in Equation (3), the cost function is now
modified as follows by considering the Huber loss.

J =
m

∑
k=1

L
([

uk
vk

]
− h
(

C
S T j,est, pS

i,est

))
, (25)

where L(·) is the Huber function and is defined as:

L(e) =
n

∑
i=1

ei ;
{

ei =
1
2 ei

2 |ei| ≤ δ

ei = δ|ei| − 1
2 δ2 |ei| > δ

, (26)

where e ∈ Rn×1, ei represents the ith element of the vector e and δ is the Huber threshold
which is set to 5.991 in this paper and must be set manually in advance. It is evident that
when the error is greater than the threshold δ, the error will show a linear growth instead
of the original squared increment, which can effectively eliminate the large error caused by
the outliers.

A detailed derivation and explanation about how to realize the outliers suppression
into the state increment calculation shown in Equation (22) are given in the following. With
the use of the Huber function (26), let us redefine the problem as searching for a state
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increment ∆x based on a fixed state x f ix that can make the modified cost function as small
as possible. That is

J = L
(

ere

(
x f ix, ∆x

))
, (27)

By using the Taylor expansion, the first-order approximation can be obtained

J ≈ L(ere), (28)

where ere is defined as:
ere = ere

(
x f ix

)
+ Jere

∆x, (29)

Using the chain rule, the derivative of the cost function with respect to the state
increment can be expressed by

∂L(ere)
∂∆x =

(
∂(ere)
∂∆x

)T
diag(ere)(diag(ere))

−1 ∂L(ere)
∂(ere)

= JT
ere

diag(ere)b = JT
ere

Bere
(30)

where b and B are defined by

b = (diag(ere))
−1 ∂L(ere)

∂(ere)
, (31)

and
B = diag(b), (32)

respectively.
According to Equations (26) and (31), the detailed configuration of the diagonal matrix

B can be written as:

B =


ψ(ere,1) 0 · · · 0

0 ψ(ere,2) · · · 0
...

...
. . .

...
0 0 · · · ψ(ere,2m)

, (33)

where ere,1, ere,2 and ere,2m are the 1st, 2nd and 2mth element of the vector ere, respectively.
The ψ(·) is defined as:

ψ(e) =

{
1 |e| ≤ δ
δ
|e| |e| > δ

, (34)

Substituting Equation (29) into Equation (30) yields

∂L(ere)

∂∆x
= JT

ere
Bere = JT

ere
B
(

ere

(
x f ix

)
+ Jere

∆x
)

, (35)

If Equation (35) is zero, one has

JT
ere

B
(

ere

(
x f ix

)
+ Jere

∆x
)
= 0

⇒ ∆x = −
(
JT

ere
BJere

)−1JT
ere

Bere

(
x f ix

) (36)

Compared with Equation (22), obviously, the cost function with Huber loss is almost equiv-
alent to iteratively reweighted least squares (IRLS). Therefore, based on Equations (36) and (24),
the BA algorithm with outlier rejection can be carried out to obtain the optimal camera poses
and map point positions.

Following the above description, not only the sensitivity of the BA with respect to the
initial value but also the resistance against outliers will be tested. More specifically, the
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ground truth pose of the camera (C
S Tgt) is multiplied by a perturbation as the initial value,

which is shown in Equation (37).

C
S Tinitial guess =

C
S Tgt exp

(
ζ∧SE3

)
, (37)

where ζ ∈ se(3). Finally, we plot the root mean square error (RMSE) of the estimated camera
pose according to different initial guesses C

S Tinitial guess, which are represented as different
L2-norm values ζ. At the same time, it must be emphasized that the BA used in the tracking
thread does not optimize the numerous map points, but only the current camera poses in
order to improve real-time performance, also known as motion-only BA [8]. Therefore, the
following tests (with outliers) are all based on this type of BA. The first row of Figure 9
shows the results without Huber, while the second row presents those with Huber.
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Figure 9. Optimization results of motion-only BA according to different initial guesses: (a) RMSE of
Euler angle (without using Huber); (b) RMSE of position (without using Huber); (c) RMSE of Euler
angle (with using Huber); (d) RMSE of position (with using Huber).

Apparently, with the aid of the Huber loss, the performance of BA is much more
accurate, which means that the Huber loss can effectively resist the impact of outliers.
Meanwhile, the sensitivity against the initial value perturbation is also much lower. At
the right side of the horizontal axis of each graph in Figure 9, it also illustrates that if the
initial guesses are quite poor, the estimated state will still diverge even using the Huber
loss. Fortunately, the image frame rate is mostly between 20 and 30. The UAV’s pose state
usually does not change much in such a short period of time (about 0.05 s). Therefore, a
terrible initial guess is less likely to be created under normal circumstances.
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3. Online Adaptive Matching Threshold Tuning for vSLAM System
3.1. Accuracy Analysis under Different Matching Thresholds

After introducing the problems faced by BA, let’s move on to another issue. Feature
matching plays a quite important role in the feature-based vSLAM system, and the match-
ing result will directly affect many critical procedures, such as keyframe selection, BA,
triangulation used in mapping, and so on. Undoubtedly, all of the above will directly
or indirectly impact the final vSLAM accuracy. Meanwhile, as mentioned in Section 2.4,
feature matching relies heavily on the matching threshold, which is a Hamming distance
with no physical meaning and must be set before starting the vSLAM system. Based on
the above description, a correlation between the matching threshold and the positioning
accuracy definitely exists. As a result, a guide regarding the selection of the threshold
should be provided.

Take the MH_01_easy series as an example, and observe the positioning accuracy with
matching thresholds 10, 15 and 20, respectively. As listed in Table 1, the absolute trajectory
error (ATE) and relative pose error (RPE) [31] are adopted as the benchmark to evaluate
the accuracy.

Table 1. Accuracy comparison according to the different matching thresholds for MH_01_easy series.

Series Error Type Matching Threshold = 10 Matching Threshold = 15 Matching Threshold = 20

MH_01_easy RPE 0.483251 0.503435 0.404268
ATE 0.578836 0.615321 0.503354

According to Table 1, it can be seen that the RPE and ATE are not the smallest for
the most severe matching threshold, 10. The reason is that when the matching threshold
is very small, it drastically reduces the number of correct match pairs and thus loses the
constraint for state optimization. However, the increase in the matching threshold does
not necessarily guarantee an increase in localization accuracy. Table 1 clearly reveals that a
robust vSLAM should be able to adjust the associated matching threshold automatically.
The online automatic threshold scheduling not only improves the overall localization
accuracy but prevents tedious manual adjustment as well. In the following section, an
online adaptive matching threshold tuning algorithm is proposed.

3.2. Online Adaptive Matching Threshold Tuning Algorithm

This research tends to use more physically meaningful displacement and yaw angle
differences between keyframes as indicators to adjust the matching threshold. As men-
tioned in Section 2.2, the overlap rate between the keyframe’s FoV and the current global
map is relatively low. For example, when the displacement and yaw angle difference
between two adjacent keyframes are less than certain thresholds defined as thresm,1 and
thresyaw,1, it represents a contradiction with the definition of a keyframe. Therefore, it can
be inferred that the threshold of the Hamming distance is too severe, and then increases the
value immediately. In the opposite case, the matching threshold will be reduced. Because
the initial stereo image is the most stable, the initial matching threshold is set to 10, and
an upper bound thresmax and lower bound thresmin are set to limit the matching threshold
range. The overall process is summarized in Figure 10, and the parameter settings used in
this paper are listed in Table 2.
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Figure 10. Flowchart of online adaptive matching threshold tuning algorithm.

Table 2. Parameter settings for the proposed online adaptive matching threshold tuning algorithm.

Parameter Setting Value

thresm,1 0.65
thresyaw,1 5
thresm,2 1

thresyaw,2 6
thresmax 45
thresmin 5

4. Online Adaptive Parameter Tuning for Mahony Complementary Filter
4.1. Mahony Complementary Filter

IMUs is an indispensable component for UAVs, and most flight control algorithms
rely heavily on them for attitude estimation. In other words, IMU information is basically
available on UAVs. Besides, it is expected that the positioning accuracy or robustness can
be improved by fusing IMU and vSLAM information. Therefore, this paper not only uses
vSLAM to obtain positioning information but also uses Mahony complementary filter to
calculate the UAV’s attitude from IMU measurements. First, a brief introduction to the
Mahony complementary filter will be given below.

The first step to carrying out the Mahony complementary filter algorithm is to integrate
the gyroscope measurements or angular velocity, which can be expressed as

B
Gqk = normalize

(
B
Gqk−1 + 0.5∆kΩ(ωk−1,mes)

B
Gqk−1

)
, (38)
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where G represents the gravity frame, whose z-axis is always parallel to the gravity. B
G

qk is
the normalized quaternion, which represents the attitude of the gravity frame with respect
to the body frame at the moment k. ωk−1,mes is the angular velocity measurement at the
moment k− 1 and ∆k is the sampling period of the IMU, which is 0.005 s in the EuRoC
dataset. Ω(·) is defined as:

Ω(ω) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 ; ω =

ωx
ωy
ωz

, (39)

The unit gravity vector ak,est is further estimated by the attitude B
G

qk derived from
Equation (38), as shown in Equation (40).

~
ak,est =

B
Gq∗k ⊗

[
0 0 0 1

]
⊗ B

Gqk ;
~
ak,est =

[
0

ak,est

]
, (40)

where ak,est is the estimated unit gravity vector, the star mark in B
G

q∗k represents the conju-
gate operation on the quaternion, and ⊗ is defined as:[

q1 q2 q3 q4
]T ⊗

[
q′1 q′2 q′3 q′4

]T

=


q1q′1 − q2q′2 − q3q′3 − q4q′4
q1q′2 + q2q′1 + q3q′4 − q4q′3
q1q′3 − q2q′4 + q3q′1 + q4q′2
q1q′4 + q2q′3 − q3q′2 + q4q′1

 (41)

After obtaining the estimated unit gravity vector, the error ek can be calculated by
comparing ak,est it with the acceleration measurement

ek = ak,est ×
ak, f ilter∥∥∥ak, f ilter

∥∥∥ , (42)

where ak, f ilter represents the acceleration measurement after passing through a low-pass
filter (LPF) at moment k. The setting of the LPF in this paper will be described in Section 5.1.
Then, a P gain Kp is applied for IMU pose estimation correction purpose

uk = Kpek, (43)

The correction effort uk is used to compensate for the angular velocity measurement.
As a result, the new attitude estimation at the next moment can be derived by integrating
the compensated angular velocity shown as follows

B
Gqk+1 = normalize

(
B
Gqk + 0.5∆kΩ(ωk,mes − uk)

B
Gqk

)
, (44)

However, there are some problems in this process, which will be analyzed and im-
proved in the following section.

4.2. Online Adaptive Kp Tuning

According to Equations (42) and (43), the attitude error correction (44) should have a
premise. The acceleration measurement is supposed to contain gravity information only to
truly reflect the accumulated error of attitude. In other words, the compensation timing of
Equation (44) should be restricted. Put simply, when the difference between acceleration
measurement and gravity is greater than a threshold thresnorm, the compensation effort uk
should be disabled.
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Based on the above description, a confidence level is considered to represent the
difference between the acceleration measurement and gravity. For example, the smaller
the difference between the two, the less the UAV’s acceleration there is in acceleration
measurement, which can reflect the accumulated error more truly. Based on this motivation,
this paper further proposes an adaptive Kp, applied in Equation (43), in compliance with
different motions in order to improve the estimation accuracy.

The following presents several adjustment strategies (including control and experi-
mental group) to analyze the accuracy improvement.

• Pure Integration (control group):

The attitude is directly obtained by integrating the angular velocity according to
Equation (38).

• Arctan Method (control group):

Directly obtain the Euler angle directly through Equation (45).

φ = atan2
(

ak,y, f ilter, ak,z, f ilter

)
θ = atan2

(
−ak,x, f ilter,

√
a2

k,y, f ilter + a2
k,z, f ilter

) (45)

• Pure Mahony (control group):

No matter if the difference between acceleration measurement and gravity is smaller
than the threshold thresnorm, the angular velocity is always compensated according to
Equation (44).

• Conditional Method (experimental group):

If the difference between acceleration measurement and gravity is greater than the
threshold thresnorm, uk will be set to zero.

• Adaptive Method Version. 1 (experimental group):

Based on the Conditional Method, Kp in Equation (43) is further adjusted according to
Equation (46).

uk = Kp · exp

−abs
(∥∥∥ak, f ilter

∥∥∥− g
)

thresnorm

ek, (46)

where g is gravity acceleration and is set to 9.82121 in this paper.

• Adaptive Method Version. 2 (experimental group):

Based on the Adaptive Method Version.1, a minor change is made

uk = Kp · exp

−abs
(∥∥∥ak, f ilter

∥∥∥− g
)

κ · thresnorm

ek, (47)

where κ is an additional parameter to adjust the sensitivity of Kp for acceleration change.

• Adaptive Method Version. 3 (experimental group):

Based on the Adaptive Method Version.2, modify Equation (47) as the following
adaption law

uk =

Kp + ∆Kp · exp

−abs
(∥∥∥ak, f ilter

∥∥∥− g
)

κ · thresnorm

ek, (48)

Table 3 shows the parameter settings used in this paper. Then, the EuRoC dataset is
used to evaluate the above seven adjustment strategies. Besides, the estimated results are
shown in Figures 11–13. These figures show the roll and pitch angle estimation results for
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different adjustment strategies and are presented in the first and second rows of each figure,
respectively, while the third row represents a flag that indicates whether the difference
between measured acceleration and gravity is smaller than the threshold thresnorm. Finally,
the RMSE of the Euler angle is listed in Table 4.

Table 3. Parameter setting for the proposed online adaptive Kp tuning algorithm.

Parameter Setting Value

thresnorm 0.01
Kp 0.15
κ 12

∆Kp * 0.4
* In MH_02_easy and MH_03_medium series, it will be set to 0.01.
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MH_03_medium series.



Sensors 2022, 22, 8067 19 of 33

Sensors 2022, 22, x FOR PEER REVIEW 20 of 35 
 

 

 

Figure 12. Roll and pitch angles were obtained from different adjustment strategies for the MH_03_me-

dium series. 

 

Figure 13. Roll and pitch angles were obtained from different adjustment strategies for the MH_04_diffi-

cult series. 

Table 4. Results of online adaptive pK  tuning algorithm for EuRoC dataset. (Unit: deg). 

Method\Series 

MH_01_Easy MH_02_Easy MH_03_Medium MH_04_Difficult MH_05_Difficult 

Roll 

(RMSE) 

Pitch  

(RMSE) 

Roll 

(RMSE) 

Pitch  

(RMSE) 

Roll 

(RMSE) 

Pitch  

(RMSE) 

Roll 

(RMSE) 

Pitch  

(RMSE) 

Roll 

(RMSE) 

Pitch  

(RMSE) 

Pure  

Integration 
1.2140 0.8997 0.3969  0.3090 0.1739 0.2019 0.28612 0.2080 0.32292 0.2605 

Arctan Method 2.0094 1.7620 1.5191 1.6333 4.3881 3.9834 2.4454 2.6123 2.4323 2.4165 

Pure Mahony 0.35373 0.2963 0.2513 0.3500 0.88704 0.6433 0.72719 0.5796 0.6052  0.5560 

Conditional 

Method 
1.1734 0.5215 0.3013 0.2087 0.1246 0.1592 0.2944 0.1838 0.2704 0.2456 

Adaptive 

Method  

Version.1 

1.1634 0.5930 0.3226 0.2182 0.1272 0.1651 0.2949 0.1899 0.2847 0.2471 

Figure 13. Roll and pitch angles were obtained from different adjustment strategies for the
MH_04_difficult series.

Table 4. Results of online adaptive Kp tuning algorithm for EuRoC dataset. (Unit: deg).

Method\Series MH_01_Easy MH_02_Easy MH_03_Medium MH_04_Difficult MH_05_Difficult
Roll

(RMSE)
Pitch

(RMSE)
Roll

(RMSE)
Pitch

(RMSE)
Roll

(RMSE)
Pitch

(RMSE)
Roll

(RMSE)
Pitch

(RMSE)
Roll

(RMSE)
Pitch

(RMSE)

Pure Integration 1.2140 0.8997 0.3969 0.3090 0.1739 0.2019 0.28612 0.2080 0.32292 0.2605
Arctan Method 2.0094 1.7620 1.5191 1.6333 4.3881 3.9834 2.4454 2.6123 2.4323 2.4165
Pure Mahony 0.35373 0.2963 0.2513 0.3500 0.88704 0.6433 0.72719 0.5796 0.6052 0.5560

Conditional Method 1.1734 0.5215 0.3013 0.2087 0.1246 0.1592 0.2944 0.1838 0.2704 0.2456
Adaptive Method

Version.1 1.1634 0.5930 0.3226 0.2182 0.1272 0.1651 0.2949 0.1899 0.2847 0.2471

Adaptive Method
Version. 2 1.1724 0.5270 0.30324 0.2091 0.12412 0.1595 0.2946 0.1845 0.2718 0.2457

Adaptive Method
Version. 3 1.0487 0.4166 0.29874 0.2084 0.12569 0.1590 0.2928 0.1802 0.2216 0.2448

Examining Table 4, it can be observed that Pure Mahony achieved good accuracy
performance in the MH_01_easy and MH_02_easy series. The main reasons are further
analyzed. According to [27], it can be known that the UAV’s motions in both the series
are relatively slow in the whole dataset, which means that the error ek is reliable most of
the time, so the Pure Mahony, which always compensates the angular velocity, will have
high accuracy in attitude estimation. At the same time, we observe that the Conditional
Method has quite higher accuracy than Pure Mahony for aggressive motions series, such
as MH_03_medium, MH_04_difficult and MH_05_difficult. These experimental results
strongly show that conditional compensation can improve accuracy in aggressive motions
definitely in regard to the Adaptive Method Version. 1~3, we can find that the Adaptive
Method Version.3 has more stable and accurate results, which sufficiently shows that the
online Kp adjustment is helpful for the attitude estimation in aggressive motions. Finally,
in the MH_04_difficult series, the results show that the Pure Integration achieves a good
accuracy performance in the roll angle; this is because the EuRoC dataset uses a higher
grade IMU. According to [27], MH_04_difficult has the shortest duration among the five
series, so the accumulation error induced by pure integration is not significant. There is no
doubt that using pure integration to obtain the attitude will definitely cause estimation drift.
Briefly, this paper will adopt the Adaptive Method Version. 3 for the attitude calculation.
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5. Motion Compensation Loop Design
5.1. Static State Detection Algorithm

With the above introduction and analysis of the Mahony complementary filter, it
is obvious that the attitude calculated through the IMU is relative to the gravity frame,
while the information obtained by vSLAM is relative to the navigation frame. Therefore,
information alignment from the IMU gravity frame to the vSLAM navigation frame is
essential for pose compensation.

Equation (49) shows the process of converting the IMU information into the same
reference frame as vSLAM.

S
CTk,imu = S

B0
TB0

G
TG

B Tk,imu
B
CT, (49)

where G
B Tk,imu is the kth pose information for the body frame relative to the gravity frame

calculated by the IMU, S
CTk,imu is the converted IMU information, and B0 is the first body

frame. Besides, according to the definition of the navigation frame, S
B0

T is the inverse
matrix of B

CT, which represents the relative pose between the body frame and the left
camera frame, and it is worth mentioning that S

B0
T and B

CT are fixed values only related
to the hardware setup, and must be derived from the calibration procedure in advance.
Fortunately, in the EuRoC dataset, these values have been precisely provided. It is obvious
that each conversion will involve B0

G
T. In other words, it must be as accurate as possible

in order to avoid negative compensation effects. Meanwhile, when a UAV is stationary,
the acceleration measurements which do not involve linear acceleration are much cleaner.
Based on the stationary property of the UAV, accelerometer measurements in a static state
will be applied to obtain accuracy B0

G
T before activating the vSLAM system. First, in order

to know when the UAV is stationary exactly, this paper further proposes a static state
detection algorithm, which will be illustrated in detail below.

However, even in the stationary status, the accelerometer inevitably contains high-
frequency noise and thereby causes inaccurate pose estimation. An LPF, as shown in
Equation (50), is applied to suppress the high-frequency noise appearing in the accelera-
tion measurements

ak, f ilter = βak−1, f ilter + (1− β)ak,mes, (50)

where ak, f ilter is the kth filtered acceleration measurement, ak,mes is the kth unfiltered acceler-
ation measurement, while β can be defined as:

β =
1

(1 + 2π fc∆k)
, (51)

where fc is the cutoff frequency and is set to be 0.4775 Hz in this paper.
After filtering the acceleration measurements, they are placed into a moving window

(500 pieces in size). When the moving window is full, the judgment procedure will be
triggered. If the standard deviation in this moving window is less than thresstd, which is
set to be 0.02, and the difference between the latest measurement and the gravity is less
than thresnorm as well, the moment is considered to be stationary. However, if the condition
is not satisfied, then 70% history data in the moving window will be cleared, and the above
action will be repeated again until the static state is detected. The flowchart of the overall
detection algorithm is illustrated in Figure 14, while Figure 15 shows the results of the
static state detection for the EuRoC dataset. In Figure 15, the filtered 3-axis acceleration
and the L2-norm of acceleration are illustrated, respectively. In addition, the timing of
the static state determined by the proposed algorithm is presented as well. According
to the detection results, the dataset MH_01_easy series is considered to be stationary at
23.5 s, 11.25 s for the MH_03_medium series and 13 s for the MH_04_difficult series. The
results also show that the UAVs are not immediately detected as a static state when they are
stationary. The reason is that the detection accuracy will significantly affect the subsequent
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compensation procedure, so the relevant thresholds in the static state detection algorithm
are set more severely to guarantee the detection quality.
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Figure 15. Filtered acceleration measurements and the results of static state detection: (a) For
MH_01_easy series; (b) For MH_03_medium series; (c) For MH_04_difficult series.

5.2. Motion Compensation Proccess

In order to fit the body frame setup and facilitate the calculation of B0
G

T, the gravity
frame is rotated by −90 degrees according to its y-axis first, and the x-axis of the rotated
gravity frame will be parallel to the opposite direction of gravity. Based on the coordi-
nate configuration, when the UAV is stationary, the relationship between acceleration
measurements and gravity can be expressed by
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aaver,x
aaver,y
aaver,z

 = R

g
0
0

, (52)

where aaver,x, aaver,y, aaver,z are the average of the latest measurements within 0.5 s in moving
window, φ0, θ0 and ψ0 are the euler angles of the body frame with respect to the rotated
gravity frame in static state, andR is defined as:

R =

 cos(φ0) sin(φ0) 0
− sin(φ0) cos(φ0) 0

0 0 1

cos(θ0) 0 − sin(θ0)
0 1 0

sin(θ0) 0 cos(θ0)

1 0 0
0 cos(ψ0) sin(ψ0)
0 − sin(ψ0) cos(ψ0)

, (53)

Substituting Equation (53) into Equation (52) givesaaver,x
aaver,y
aaver,z

 = g

 cos(φ0) cos(θ0)
− sin(φ0) cos(θ0)

sin(θ0)

, (54)

According to Equation (54), φ0 and θ0 can be calculated by{
φ0 = atan2

(
−aaver,y, aaver,x

)
θ0 = atan2

(
aaver,z,

√
a2

aver,x + a2
aver,y

) , (55)

Let ψ0 equal to 0 degrees, then the rotation matrix of the first body frame with respect
to the gravity frame can be derived as follows

G
B0

R =

0 0 −1
0 1 0
1 0 0

H, (56)

whereH is defined as

H =

 cos(θ0) 0 sin(θ0)
0 1 0

− sin(θ0) 0 cos(θ0)

cos(φ0) − sin(φ0) 0
sin(φ0) cos(φ0) 0

0 0 1

 (57)

Note that the settings of ψ0 will not affect the attitude estimation (in Mahony comple-
mentary filter). In this paper, we further define that the origin of both the gravity frame
and first body frame are coincident, as shown in Equation (58).

torigin,G =
[
0 0 0

]T , (58)

According to Equations (56) and (58), B0
G

T can be obtained as follows

B0
G

T = G
B0

T−1 =

[
G
B0

R torigin,G
0 1

]−1

, (59)

And the flowchart of the B0
G

T calculation is illustrated in Figure 16.
The estimated φ0 and θ0 for the EuRoC dataset are listed in Table 5. The errors are

calculated by comparing them with the ground truth. According to Table 5, it can be found
that the proposed algorithm can accurately detect the stationary state and the associated
estimation errors for φ0 and θ0 are almost less than 0.1 degree, which meets the accuracy
demand of B0

G
T.



Sensors 2022, 22, 8067 23 of 33Sensors 2022, 22, x FOR PEER REVIEW 25 of 35 
 

 

 

Figure 16. Flowchart of T
B

G
0  calculation. 

The estimated 0  and θ0  for the EuRoC dataset are listed in Table 5. The errors are 

calculated by comparing them with the ground truth. According to Table 5, it can be found 

that the proposed algorithm can accurately detect the stationary state and the associated 

estimation errors for 0  and θ0  are almost less than 0.1 degree, which meets the accuracy 

demand of T
B

G
0 . 

Table 5. Results of a static state detection algorithm for the EuRoC dataset. 

Series 

Time Stamp (Second) 

for Triggering  

Static State Detection 

Algorithm (Checked 

from Figure 15) 

The True State of The 

UAV is Stationary or 

Not (Checked from  

Images) 

Estimated 0  and θ0  (deg) Angle Error (deg) * 

MH_01_easy 23.5 yes 
0  4.0044 −0.008034 

θ0  15.6614 −0.034309 

MH_02_easy 28.75 yes 
0  3.3513 0.001947 

θ0  15.5490 −0.047756 

MH_03_medium 11.25 yes 
0  4.8658 0.050396 

θ0  15.6173 −0.045054 

MH_04_difficult 13 yes 
0  0.4097 −0.073378 

θ0  24.1770 0.113550 

MH_05_ difficult 14.75 yes 
0  0.1934 −0.006640 

θ0  23.9930 0.095132 

* The error is defined as the ground truth minus the estimated value. 

After obtaining the accurate T
B

G
0 , based on the attitude estimated by Mahony com-

plementary filter, the position information can be derived by integrating the free acceler-

ation twice. 

, , , , , , ,

, , , , ,

.t t a

a

G G G G
k origin B k origin B k origin B k free

G G G
k origin B k origin B k free

k k

k

2
1 1 1

1 1

Δ 0 5 Δ

Δ

v

v v
, (60) 

where 
, ,tG

k origin B  and 
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,aG

k free  is the 
thk  acceleration measurement 

Figure 16. Flowchart of B0

G
T calculation.

Table 5. Results of a static state detection algorithm for the EuRoC dataset.

Series

Time Stamp (Second) for
Triggering Static State
Detection Algorithm

(Checked from Figure 15)

The True State of The
UAV is Stationary or Not
(Checked from Images)

Estimated φ0 and θ0 (deg) Angle Error (deg) *

MH_01_easy 23.5 yes φ0 4.0044 −0.008034
θ0 15.6614 −0.034309

MH_02_easy 28.75 yes φ0 3.3513 0.001947
θ0 15.5490 −0.047756

MH_03_medium 11.25 yes φ0 4.8658 0.050396
θ0 15.6173 −0.045054

MH_04_difficult 13 yes φ0 0.4097 −0.073378
θ0 24.1770 0.113550

MH_05_ difficult 14.75 yes φ0 0.1934 −0.006640
θ0 23.9930 0.095132

* The error is defined as the ground truth minus the estimated value.

After obtaining the accurate B0
G

T, based on the attitude estimated by Mahony complemen-
tary filter, the position information can be derived by integrating the free acceleration twice.{

Gtk,origin,B = Gtk−1,origin,B + Gvk−1,origin,B∆k + 0.5Gak−1, f ree(∆k)2

Gvk,origin,B = Gvk−1,origin,B + Gak−1, f ree∆k
, (60)

where Gtk,origin,B and Gvk,origin,B represent the kth position and velocity of the UAV un-

der the gravity frame, respectively, and Gak, f ree is the kth acceleration measurement with
gravitational component removed, also known as free acceleration and can be defined as:

Gak, f ree =
G
B Rkak, f ilter −

0
0
g

, (61)

where G
B Rk is obtained by converting B

G
qk, which is derived from the Mahony complemen-

tary filter. Besides, it is worth mentioning that in the EuRoC dataset, every ten sample
periods 10∆k, both IMU and image information will be aligned, which is good timing to
fuse them. Therefore, first define G

B Tk+10 as:

G
B Tk+10 =

[
G
B Rk+10

Gtk+10,origin,B
0 1

]
, (62)
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and convert the reference coordinate system of G
B Tk+10 by Equation (49) to further obtain

S
CTi+1,com, which will be served as the initial guess of BA in the tracking thread at moment
i + 1, replacing the constant velocity motion model. These processes are illustrated in
Figure 17.
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However, due to the double integration used in Equation (60), the position Gtk,origin,B

and velocity Gvk,origin,B error will accumulate rapidly. Therefore, the position as well as
velocity will be reset by the compensated vSLAM output S

CTi+1 to reduce the accumulated
error. Firstly, convert the reference frame of S

CTi+1 by Equation (63).

G
B Tk+10,res =

G
B0

TB0
S TS

CTi+1
C
BT, (63)

where G
B Tk+10,res is defined as:

G
B Tk+10,res =

[
G
B Rk+10,res

Gtk+10,res
0 1

]
, (64)

Thus, the reset position Gtk+10,res can be obtained, while the reset speed Gvk+10,res can
be derived from the previous reset position, as shown in Equation (65).

Gvk+10,res =

(
Gtk+10,res − Gtk,res

)
10∆k

, (65)

After obtaining the reset position and reset speed, Equation (60) can be performed
again based on them. The overall compensation subroutine working in real-time is illus-
trated in Figure 18.
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6. Experiment Verification

In this section, the advantages of the proposed algorithm are verified by using the
EuRoC dataset. Not only the pose estimation accuracy, FPS and anti-shading robustness are
examined, but also the online adaptive tuning process of both matching thresholds and Kp is
shown to give the readers a more comprehensive understanding of the proposed algorithm.

6.1. Ablation Studied for Accuracy Comparison

This section mainly analyzes the estimation accuracy of the following four different
strategies so as to independently evaluate the effort of both online adaptive tuning algorithms:

• Case. 1: not to use both proposed online adaptive tuning algorithms.
• Case. 2: only use the online adaptive matching threshold tuning algorithm.
• Case. 3: only use the online adaptive Kp tuning algorithm.
• Case. 4: use both proposed online adaptive tuning algorithms.

Moreover, to validate the contribution of the proposed algorithm for localization
accuracy objectively, the loop closure for drift compensation in the following experiments
is not considered. Based on the above four conditions, the corresponding accuracy analysis
results are shown in Figures 19–22. In Figures 19 and 20, the error bars in each dataset
series with respect to the above four different strategies are displayed from left to right.
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Experimental examinations clearly show that the proposed online adaptive matching
threshold tuning algorithm can effectively improve the accuracy. In particular, in the
MH_03_medium series, 63% and 70% accuracy improvement is achieved in RPE and ATE,
respectively. Even though the accuracy did not improve in the MH_04_difficult series,
the overall accuracy did not change drastically too much, and meanwhile, according to
Figure 20, the attitude estimation accuracy is still improved. However, we also know
that the online adaptive Kp tuning algorithm is not significantly helpful for accuracy
improvement. Even though in Table 4, the IMU data in each dataset series has been
tested independently, and results show that the online adaptive Kp tuning algorithm can
improve the attitude estimation accuracy effectively. Based on the conclusion given in
Figure 9, it can be further inferred that since the motion-only BA with Huber robust kernel
significantly reduces the sensitivity to the initial value, the pose compensation with IMU
does not have a noticeable effect. However, for severe situations, such as when the stereo
cameras are temporarily occluded, the IMU’s pose compensation will play an important
role in maintaining the positioning stability, which will be tested and analyzed in the next
section. Figure 23 shows the time cost for the four different strategies, while Table 6 lists the
computer specifications used in this paper. Besides, from the onboard implementation point
of view, the Intel NUC, a lightweight and small computer with comparable computing
power, is sufficient to carry out the proposed algorithms. Figure 23 clearly shows that the
online adaptive matching threshold tuning algorithm can improve FPS effectively. The
reason is that the proposed adaptive matching threshold tuning algorithm can reasonably
adjust the matching threshold to avoid over-triggering the keyframe selection, namely
excessive mapping and involving too many map points that need optimization.

Table 6. Computer specifications used for the proposed algorithm.

CPU RAM

Intel Core i7-11800H @2.30GHz 16 GB

Figure 24 shows the automatic tuning process of matching threshold and Kp param-
eter (take the MH_01_easy and MH_03_medium series, for example). Figure 24 shows
the matching threshold is not always being adjusted at every frame, but only when the
keyframe is established, which corresponds to the content described in Section 3.2. In
contrast, the online adaptive Kp tuning is performed at every moment, as long as the
acceleration information is available.
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6.2. Anti-Shading Robustness Test

Since the IMU information is integrated into the vSLAM algorithm, the UAVs’ flight
trajectories can temporarily rely on the motion compensation loop, which further enhances
the overall anti-shading robustness of the original vSLAM. Following the above statement,
the robustness of the overall system against shading will be examined. The examination
method is to turn off the left and right camera images simultaneously to simulate the
shading situation. In order to analyze the anti-shading performance more comprehensively,
the following three vSLAM scenarios will be examined and analyzed.

• Case. A: without using both the online adaptive parameter tuning algorithm and the
motion compensation loop subroutine.

• Case. B: only using motion compensation loop subroutine.
• Case. C: using the proposed online adaptive parameter tuning algorithm and the

motion compensation loop subroutine.

Table 7 shows the corresponding results, including the time stamp for image loss, and
the pose accuracy represented in RPE and ATE.
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Table 7. Results of anti-shading robustness test.

Scenarios Series Time Stamp (Second)
for Image Loss RPE (Meter) ATE (Meter)

Case. A
(Pure vSLAM)

MH_01_easy 55.45~56.95 Tracking Fail Tracking Fail
MH_02_easy 55.45~57.95 Tracking Fail Tracking Fail

MH_03_medium 42.35~44.35 Tracking Fail Tracking Fail
MH_04_difficult 34.95~36.45 Tracking Fail Tracking Fail
MH_05_ difficult 74.95~77.45 Tracking Fail Tracking Fail

Case. B
(vSALM with the proposed
motion compensation loop)

MH_01_easy 55.45~56.95 0.5200 0.6119
MH_02_easy 55.45~57.95 0.4210 0.5292

MH_03_medium 42.35~44.35 Tracking Fail Tracking Fail
MH_04_difficult 34.95~36.45 Tracking Fail Tracking Fail
MH_05_ difficult 74.95~77.45 1.1378 0.8813

Case. C
(vSALM with the proposed
online adaptive parameter

tuning and motion
compensation loop)

MH_01_easy 55.45~56.95 0.2578 0.3290
MH_02_easy 55.45~57.95 0.3686 0.4471

MH_03_medium 42.35~44.35 0.4248 0.4615
MH_04_difficult 34.95~36.45 0.7099 0.7794
MH_05_ difficult 74.95~77.45 1.0806 0.8940

According to Table 7, Case. A, the original vSLAM system, is unable to perform
localization successfully without using both the proposed online adaptive algorithm and
the motion compensation loop subroutine. In addition, in Case B, even though the system
can work properly in MH_01_easy, MH_02_easy and MH_05_difficult series, the UAVs’
localizations still fail for MH_03_medium and MH_04_difficult series. On the contrary, by
using the proposed online adaptive algorithm and the motion compensation loop subrou-
tine, namely Case. C, not only the pose estimation can be successfully conducted in all
data series, but also the localization accuracy can be maintained. The above experimental
results firmly reveal that the developed motion compensation loop subroutine can indeed
increase the robustness against shading by the addition of IMU information, and more
importantly, a better level of robustness performance will be achieved by further combining
online adaptive parameter tuning algorithms. The key factor is that the online adaptive pa-
rameter tuning algorithm can effectively increase the attitude estimation accuracy, thereby
improving the motion compensation quality, which heavily relies on the estimated free
acceleration and attitude shown in Equation (61).

The trajectories of the anti-shading experiment are shown in Figure 25. The black
crosses in these figures represent the localization results (Case. C) via using the proposed
algorithm during the critical image loss period. These figures also show that the positioning
system without the proposed algorithm not only fails to track after image loss, but also
makes a straight-line estimation based on the constant velocity motion model. This exper-
iment implies that there will be less chance to pull back the trajectory under aggressive
motions even when the image information recovers. On the contrary, these failures can be
solved successfully by applying the proposed method.

In the following, we present the results of anti-shading robustness tests in parallel, as
shown in Figure 26, to make the robustness analysis of the proposed vSLAM more intuitive.
Figure 26a shows the localization results for three different scenarios after masking the
stereo camera at the 849th frame in the MH_03_medium series. It is obvious that the
proposed algorithm is the only survivor that completes the indoor flight localization and
mapping examination successfully, while the others all fail to track the flight trajectories;
this result highlights again that the proposed algorithm is effective in improving the
robustness against shading for the vSLAM system. In addition, Figure 26b shows the
localization results for three different scenarios before the stereo camera is masked. Even
though all these three scenarios conduct localization successfully, the proposed algorithm
has the lowest number of keyframes, which implies that the developed vSLAM algorithm
can preserve precise vSLAM with fewer map feature points. It is worth mentioning that
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fewer map feature points requirement reduces the computational loading and saves a lot of
storage memory space; these advantages make the proposed algorithm more suitable for
practical applications of light UAVs.
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7. Conclusions

UAVs are one of the most promising vehicles in recent years, and the underlying
positioning technology is receiving more and more attention. However, the over-reliance on
GPS has limited the application diversity of UAVs. In order to solve the navigation problem
in GPS-denied or interferenced environments, the stereo vSLAM solution is gradually
gaining attention. Therefore, this paper presents an improved UAVs vSLAM system based
on the S-PTAM architecture and Mahony complementary filter. The proposed online
adaptive matching threshold tuning algorithm and online adaptive Kp tuning algorithm
can improve the overall vSLAM accuracy and robustness. These adaptive tuning algorithms
will automatically adjust the influential matching threshold online and the Kp gain used in
the Mahony complementary filter, respectively. The adaptive mechanisms eliminate the
tedious manual adjustment of these non-physically meaningful parameters. In order to fuse
the IMU and vSLAM information, an additional static state detection algorithm is proposed,
which has been tested and proven to be accurate in detecting static state. After the static
state has been detected, an accurate initial relationship can be computed, which will greatly
help the subsequent information conversion. Besides, the error of the initial relationship
is almost less 0.1 degree. Based on this accurate initial relationship, a good conversion
mechanism between IMU and vSLAM is established. Finally, a couple of experimental
studies are used to validate the proposed algorithm and the vSLAM architecture. The
results show that the online adaptive matching threshold tuning algorithm can improve
localization accuracy and FPS effectively. Moreover, an anti-shading robustness test was
further addressed. Experiments firmly show that the vSLAM robustness against temporary
image loss can be achieved successfully by incorporating the proposed algorithms.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/s22208067/s1, Vedio S1: An Online Adaptive Parameter Tuning vSLAM
Algorithm for UAVs in GPS-denied Environments-Series (3).
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