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Abstract: As a new type of vision sensor, the dynamic and active-pixel vision sensor (DAVIS) outputs
image intensity and asynchronous event streams in the same pixel array. We present a novel visual
odometry algorithm based on the DAVIS in this paper. The Harris detector and the Canny detector
are utilized to extract an initialized tracking template from the image sequence. The spatio-temporal
window is selected by determining the life cycle of the asynchronous event streams. The alignment
on timestamps is achieved by tracking the motion relationship between the template and events
within the window. A contrast maximization algorithm is adopted for the estimation of the optical
flow. The IMU data are used to calibrate the position of the templates during the update process
that is exploited to estimate camera trajectories via the ICP algorithm. In the end, the proposed
visual odometry algorithm is evaluated in several public object tracking scenarios and compared
with several other algorithms. The tracking results show that our visual odometry algorithm can
achieve better accuracy and lower latency tracking trajectory than other methods.

Keywords: event camera; visual odometry; tracking template; contrast maximization

1. Introduction

Visual odometry has played an important role in robot navigation [1], intelligent trans-
portation [2], and intelligent inspection [3]. Although several decades of active research
have led to a certain level of maturity, we still face challenges in scenes with high dynamics,
low texture, or harsh lighting conditions [4]. Conventional visual odometry generally
acquires images from frame-based cameras and estimates camera motion from several
adjacent images [5]. However, for objects with a high dynamic range or high-speed motion,
frame-based cameras cannot obtain clear images. Therefore, it is difficult for a frame-based
camera to extract the feature points of the image and estimate the camera pose in this
case. Furthermore, during the blind period between frames, the frame-based camera does
not capture the precise motion of the feature information. Frame-based cameras capture
redundant information in static scenes, resulting in a waste of storage and computational
resources [6].

Bio-inspired event cameras, such as the dynamic vision sensor (DVS) [7], overcome
the above-mentioned limitations of frame-based cameras [8]. As a new type of bio-heuristic
vision sensor, the event camera has a completely different mode from the conventional
camera [9], and event cameras only output the change in pixel-level brightness. For each
pixel, when the intensity change reaches a certain threshold, an event is triggered; the event
carries information on pixel coordinates, timestamps, and polarity [10]. Compared with the
low frame rate, large delay, and insufficient dynamic response range in conventional visual
cameras, an event camera has the characteristics of fast response speed, high dynamic
range, and low power consumption [11]. Although traditional frame-based tracking algo-
rithms have been vigorously developed, asynchronous event streams cannot be directly
handled by current frame-based pose estimation methods [12]. As a result, event-based
tracking algorithms are required. The dynamic and active-pixel vision sensor (DAVIS)
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is a sensor that combines a frame-based camera with an asynchronous event-based cam-
era in the same pixel array. Based on the assumption that events are mainly triggered
by high gradient edges in the image, the optimal motion parameters for events can be
computed by maximizing contrast in the Image of Warped Events (IWE) [13]. Various
reward functions for evaluating contrast were proposed and analyzed in recent work by
Gallego et al. [14]. Contrast maximization algorithms for events have also been successfully
used to solve various problems of event cameras, such as optical flow estimation [15,16],
motion segmentation [17,18], 3D reconstruction [19], and motion estimation [20]. Since
event streams cannot provide absolute brightness values and synchronized output with
image frames, a contrast maximization algorithm is utilized to resolve event and image
frame data associations in this paper, while the event-based feature tracking can be further
simplified.

In this paper, we present a novel visual odometry algorithm based on template edges
using a DAVIS camera. In our tracking approach, we leverage a combination of event-
and frame-based camera measurements. The tracked initial tracking template is extracted
by the feature detector in the image, and the spatio-temporal windows are selected by
determining the life cycle of the asynchronous event streams. The calibrated tracking
templates are utilized to calculate the event camera trajectory. The main contributions are
summarized as follows:

1. Compared with traditional event-by-event tracking methods [20–22], a new tracking
mechanism is presented to resolve data associations. A contrast maximization method
is adopted to calculate the displacement parameters of the events, and the IMU data
are used to calibrate the rotation parameters of the events, which greatly enhances the
calculation speed and accuracy of the event stream.

2. Since the ICP algorithm is highly dependent on the depth of the scene, a robust
Beta-Gaussian distribution depth filter is presented to obtain a more accurate depth
of the tracking template than depth estimation with only triangulation [23,24].

3. We successfully apply our method to evaluation experiments in several different
scenarios on public event camera datasets. Compared with the visual odometry
algorithm [7,9], the proposed algorithm can achieve better performance and obtain a
lower-latency camera trajectory.

The rest of this article is organized as follows. The related work on event-based camera
visual odometry is presented in Section 2. The realization steps of fusion events and image
frame tracking are described in Section 3. The effectiveness of the algorithm is verified on
several DAVIS datasets in Section 4. Finally, conclusions are given in Section 5.

2. Related Work

Feature detection and tracking methods for frame-based cameras are well established.
However, these frame-based methods cannot track the blind time between two adjacent
frames, and frame-based cameras still capture information in all pixel arrays, even in
scenes without motion [17]. In contrast, an event-based camera only acquires information
about the areas of the scene where the intensity value has changed, and it fills the blind
spots between adjacent frames with a higher asynchronous response rate. The advantages
of event-based cameras are better suited for applications such as driverless vehicles and
motion tracking [22,25].

Event-based visual odometry can be divided into two main methods: one is to use
traditional methods to accumulate event information for tracking, and the other is to
track directly based on asynchronous event streams. Gallego et al. [26] presented the pose
tracking of a 6-DoF event camera from an existing photometric depth map (intensity +
depth information). Stoffregen et al. introduced event accumulation frames with edge
contrast maximization for motion segmentation [27]. Alzugaray and Chli [28] proposed a
purely event-based corner detector and a new corner tracker, proving that it is possible to
directly detect and track corners in event streams. Although there is a great deal of research
devoted to event-based feature detection, very little work has been done to consider the
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problem of event tracking. Some approaches for localization and mapping with event
cameras have several similarities with our method. Gallego et al. [29] detected independent
moving objects by tracking corners detected in event images integrated over short time
windows. Mueggler et al. [30] proposed a DVS-based ego-motion estimation method that
uses a continuous-time framework to directly integrate the information transmitted by the
camera. The pose trajectory of the DVS is estimated based on the observed events. Kim
et al. [31] estimated 6-DoF camera motion, log intensity gradient, and inverse depth and
used three decoupled probabilistic filters in real time.

Recently, Mueggler et al. [32] extended a frame and event tracker for DAVIS cameras
and integrated events from event cameras for high-speed object tracking. In contrast to the
above-mentioned approach, we consider the connection between event stream and images
in our modeling process, and higher-rate trajectory tracking is provided.

3. Main Methods

This paper proposes a visual odometry algorithm based on DAVIS. The main methods
are divided into two parts: feature detection and feature tracking. As shown in Figure 1,
the entire process was divided into six steps. We detect features in the image sequence.
The contrast maximization algorithm is then utilized to match the event stream in the
corresponding spatio-temporal windows and calculate the optical flow of the event. The
estimated motion parameters and the IMU measurement are exploited to calibrate the
tracking template. We then detect the depth values of the tracking template using a depth
filter. Finally, the 6-DoF event camera pose can be estimated by the ICP algorithm.
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Figure 1. An overview of the visual odometry method. θ is the optical flow of the event in the
corresponding spatio-temporal window.

3.1. Feature Detection

Since events in edge regions of the scene are triggered more frequently than those
in low-texture regions, we devise suitable features for tracking. As shown in Figure 2,
the method first extracts feature points and edge maps from image frames by the Harris
detector [9] and the Canny detector [20] in the feature detection stage. Then, it selects the
edge in the specified area around each feature point as the template edge of the feature
point. All regions are square in the same size, which is a tunable parameter. Our method
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does not need to provide frames at a constant rate, as they are only used to initialize
features. Keyframes can be added to replace missing features.
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Figure 2. Detection of the tracking template. Using the feature points image in (a) and the edge
points image in (b), we can obtain the tracking template. As shown in (c), we visualize the events of
the first spatio-temporal window.

3.2. Feature Tracking

Assuming that feature point x is detected from the image frame at time t0, the motion
of feature point x can be described as follows:

x(t) = x(t0) +
∫ t

t0

.
x(s)ds (1)

where
.
x(s) represents the position differential of the feature point x at time s.

A set of events is selected from the event stream, the time of feature point x is selected
as the spatio-temporal window corresponding to initial time t0, and W is the set of events
in the spatio-temporal window.

W = {ei|t0 < tei < t1}n
i=1 (2)

Here, ei represents the i− th event in the spatio-temporal window, and tei represents
the time when event ei occurs. n represents the number of events. Since [t0, t1] is the first
sub-time interval, the value of t1 can be calculated by setting the size of the spatio-temporal
window. For example, let W contain 10,000 events, that is, n = 10,000.

3.2.1. Choice of Spatio-Temporal Windows

In order to achieve asynchrony of the feature point tracking method, the size of the
sub-time interval is determined by the method during real-time operation. The faster
the scene moves, the smaller the sub-time interval and the faster the update frequency of
feature points.

The specific calculation process is as follows. After the optical flow of all feature points
in this iteration is obtained, the size of the next sub-time interval is calculated from the
optical flow. We define xi to represent the i − th feature point, i = {1, · · · , m}, and the
number of feature points is m. θn

i is the optical flow of feature point xi in the n− th sub-
time interval [tn−1, tn]. Given the optical flow of all feature points

{
θn

i
}m

i=1 in the sub-time
interval [tn−1, tn], the next sub-time interval [tn, tn+1] can be calculated: θn

average = (
m
∑

i=1
θn

i )/m

tn+1 = tn + 3/θn
average

(3)

where the unit of the number 3 is pixels, and θn
average represents the average optical flow of

all feature points in the sub-time interval [tn−1, tn]. The tn+1 value is calculated through
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the formula, and the time required for the feature points in the previous time interval to
move by 3 pixels on average is used as the estimated value of the current interval [tn, tn+1].

3.2.2. Maximizing IWE Contrast

After the spatio-temporal window is determined by corresponding to the feature point,
we use the contrast maximization algorithm to match the event set W around the feature
point x with the template point set. It is assumed that all template points have the same
optical flow as feature point x (the optical flow θ of all pixels in the region is the same), and
the optical flow of feature point x is constant in the sub-time interval [t0, t1]. Let the optical
flow θ of the feature point x in the time interval [t0, t1] be defined as v. For event ei in W,
as shown in Figure 3, Image of Warped Events (IWE) is used to calculate its position X′k at
time t0. The formula is as follows:

X′k =
[

x′k
y′k

]
=

[
xk
yk

]
+

[
v1
v2

]
•
(

t0 − tref

)
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Figure 3. Updating the tracking template. Figure (a) is the update process of feature points and
template points in a fixed time interval, while Figure (b) is an optical flow visualization of the
tracking template. As shown in Figure (c), the events obtain the optical flow in the first spatio-
temporal window. Figure (d) presents variance convergence curves. Variance 1 and Variance 2
represent the variance change in IWE after events are warped along with different optical flows.

The weighted IWE is defined as:

Ij(x) =
Ne

∑
k=1

Pkjδ(X− X′kj) (5)
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where X′kj is the position of the k− th event after it is distorted along the j− th optical flow
θ, Ne represents the number of events, δ represents the Dirac function, Pkj represents the
probability that the k− th event belongs to the j− th optical flow, and Ij(x) represents the
IWE corresponding to the j− th optical flow.

Events are aligned by image contrast, which is defined by a sharpness/dispersion
metric, such as the variance:

Var
(

Ij
)
=
∫

Ω

(
Ij(x)− µj

)2dx (6)

where Ω is the image plane and µj is the mean of the j− th Image of Warped Event.

θ← θ+ µ∇θ

(
Nl

∑
j=1

Var
(

Ij
))

(7)

where, µ represents the step size, and Nl represents the number of clusters.

3.2.3. Template Edge Update

After the optical flow of the feature points is obtained, the feature points and template
edges are updated. However, when the camera is rotated, the template edges and template
points move at significantly different speeds, and the points farther from the center of
rotation move faster. Therefore, if the template points are updated by only using optical
flow, the position of feature points will quickly deviate from the true value due to the
existence of rotation factors. The process of updating the stencil edge is divided into two
steps. First, the position of the stencil edge is updated by using the optical flow, and then
the position of the stencil edge is corrected by using the IMU data.

The optical flow θ is used to update the position of feature point x and the correspond-
ing position of the template edge xj. Assuming that the optical flow of the feature point
is constant in the sub-time interval [t0, t1], the optical flow θ is then utilized to update the
position of feature point x; the formula is as follows:

x(t1) = x(t0) + θ·
(
tj − t0

)
(8)

x(t0) is the position of the initially extracted feature point, x
(
tj
)

is the position of the
updated feature point, and tj is the time of the tracking template in the sub-time interval
[t0, t1].

In order to eliminate the influence of rotation on the template edge update, we intro-
duce IMU data to correct the template edge position. As a result, the corrected position is
closer to the true value of the template edge position. The relative position of the template
points relative to the feature point is calculated at time tj, and then the IMU data are used
to correct the relative position. For the template point xj, we define its relative position:

xrelative
j = xj(t)− x(t) (9)

Since the data in the IMU coordinate system and the tracking template from the camera
coordinate system are not in the same system, we need to transform the data. The IMU
measurements contain the accelerometer measures and gyroscope measures for each axis,
but what we need during the update process is the rotation matrix between the templates.
So, we convert linear acceleration and angular velocity into Euler angles and then convert
the Euler angles into a rotation matrix. The accelerometer can calculate the roll angle αacc
and pitch angle βacc at the time of rest. The gyroscope is the angular velocity integral in the
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time interval and can calculate three angles: the roll angle αgyro, pitch angle βgyro, and yaw
angle γgyro. The Euler angle fusion formula can be expressed as:

α = αgyro + (αacc−αgyro
)
· k

β = βgyro +
(

βacc − βgyro
)
· k

γ = γgyro

(10)

where α, β, and γ are obtained after the complementary fusion of the accelerometer and
gyroscope pose; k represents the proportional coefficient, which needs to be adjusted
according to the actual situation, such as by choosing 0.3. The conversion of Euler angles to
a rotation matrix is expressed as:

Rwi =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 ∗
 cos β 0 sin β

0 1 0
− sin β 0 cos β

 ∗
1 0 0

0 cos α − sin α
0 sin α cos α

 (11)

where Rwi is the rotation matrix in the IMU coordinate system.
Then, we solve the transformation of the rotation matrix between the camera coor-

dinate system and the IMU coordinate system. The transformation relation is denoted
as:

Rwc = Rwi ·Ric (12)

where Rwc is the rotation matrix in the camera coordinate system, and Ric represents the
transformation matrix between the IMU and camera coordinate systems during camera
calibration. The IJRR dataset takes the first frame of the camera as the world coordinate
system. We assume that the pose transformation of the camera is linear. The rotation matrix
of the tracking template can be obtained by linear interpolation of the time scale. The
process is represented as follows:

Rj = inv
(

Rt0
wc

)
·Rt1

wc ·
tj − t1

t0 − t1
(13)

where Rt0
wc is the rotation matrix in the camera coordinate system at time t0. Rt1

wc is the
rotation matrix in the camera coordinate system at time t1, and it is calculated from the
rotation matrix Rt1

wi in the IMU coordinate system at time t1 and the transformation matrix
Ric between the camera and IMU; Rj is the interpolated rotation matrix between t0 and tj.

The symbols Xj and X respectively represent the 3D coordinates corresponding to the
template point xj and the feature point x in the camera coordinate system at time t0.

At time t0: {
s0

xj
xj(t0) = KXj

s0
xx(t0) = KX

(14)

At time tj: {
s1

xj
xj
(
tj
)
= K

(
RjXj + t

)
s1

xx
(
tj
)
= K

(
RjX + t

) (15)

where t is the translation vector between t0 and tj, Rj is the interpolated rotation matrix
between t0 and tj, and K represents the internal parameter matrix of the camera.

Substituting the above formula into (9) and normalizing the 3D coordinates, we obtain:

xrelative
j

(
tj
)
= Nor

(
KRjK−1xj(t0)

)
− Nor

(
KRjK−1x(t0)

)
(16)

At this time, the position of xj at time tj is obtained by adding the position of the
feature point x and the relative position of xrelative

j at time tj:

xj
(
tj
)
= xrelative

j
(
tj
)
+ x
(
tj
)

(17)
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Finally, the updating of all template points can be completed through the formula.

3.2.4. Depth Estimation

After the corresponding position of the edge map of each frame is obtained, the
3D position coordinates of the edge in the space can be recovered through the matching
relationship of the pixels on the edge between different edge maps. The triangulation
method is used, and the coordinates of the 3D point in space are recovered by using the
pixel positions of the 3D points observed from different viewing angles. The same 3D point
can be observed in multiple frames, and the corresponding spatial 3D point coordinates
can be calculated for any two frames. The strategy of our method is using the properties of
the Gaussian distribution to fuse the current observations, assuming that the depth values
follow a Gaussian distribution. In the final estimation of the same 3D point, the strategy is
based on a uniform Gaussian mixture distribution.

First, a triangulation method is used to recover the depth of pixels in the edge map.
Assuming that a certain pixel p0 of the edge graph and pixel point p1 of the edge graph
are a pair of matching points, and the two pixels correspond to the same 3D point P in the
space, the formula holds as follows:

s0K−1 p0 = s1RK−1 p1 + t (18)

where R and t are the rotation matrix and translation vector of the event camera from the
edge graph to the edge graph, respectively. s0 and s1 represent the depths of the 3D point P
in the coordinate system of the event camera at times ti and tj, respectively. Equation (18)
is further simplified to obtain:

s1 =
−
(
K−1 p0

)̂
t

(K−1 p0 )̂RK−1 p1
(19)

Then, a depth value yi can be calculated from the corresponding points in the two
images. The distribution of y can be jointly represented by a Gaussian distribution and a
uniform distribution:

p(yi|ŷ, π) = πN
(

yi

∣∣∣ŷ, τ2
i

)
+ (1− π)U(yi|ymin, ymax) (20)

where N
(
yi
∣∣ŷ, τ2

i
)

is a Gaussian distribution centered on the true value ŷ, and τ2
i is its vari-

ance. π is the probability of estimating the correct depth; the closer the depth measurement
is to the true value, the closer π is to 1. As shown in Figure 4, ymin and ymax are the upper
and lower limits of the uniform distribution.
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Figure 4. Depth filter measurement model. 3D space projection is performed between the current
template position Twc and the previous template T−wc corresponding to the 2D coordinates. As the
number of corresponding template matching increases, the distribution of depth gradually converges.
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Equation (20) can be approximated by a Beta-Gaussian distribution. The step 4 of
Algorithm 1 summarizes the depth estimation steps of our algorithm.

p(Z, π|ai, bi, µi, σi)= Beta(π
∣∣∣ai, bi)N(Z

∣∣∣ui, σ2
i

)
(21)

3.2.5. Pose Estimation

According to Algorithm 1, we can calculate corresponding 3D point sets P =
{p1, p2, · · · , pn} and Q = {q1, q2, · · · , qn} through Sections 3.2.3 and 3.2.4, where the
number of corresponding point pairs is n. Then, the optimal coordinate transformation is
calculated by the ICP algorithm, that is, the rotation matrix R and the translation vector t;
the problem can be described as follows:

(R, t) = argmin
R∈SO(3),t∈R3

n

∑
i=1

wi ‖ (Rpi + t)− qi ‖
2 (22)

where wi represents the weight of each point. R and t are our required rotation matrix
and translation vector. To reduce the reprojection error during tracking, the Tukey weight
function is used as follows:

wi =

{(
1− x2

b2

)2
|x| ≤ |b|

0 otherwise
(23)

where x = ‖p−w − pw‖ and b = 5 pixels. Additionally, we find that with wi multiplied by
the internal probability π, the estimated results are significantly better. Template points
that are well tracked get the highest weight, while template points whose matching does
not converge are usually removed due to their errors being too large.
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Algorithm 1: Pseudo-code of pose estimation.

Step 1: Extracting feature points and edge points
1: Extract feature points by Harris detector
2: Extract edge points by Canny detector
3: Pick edge points around feature points as template edges
Step 2: Computing the optical flow and the spatio-temporal windows of events
4: Input: template edges P and event point set W

Output: optical flow θ

Initialize optical flow θ = 0
for i = 1 : m do
for j = 1 : n do

I(x) =
n
∑

j=1
δ(Xi − X′j); Var(I) =

∫
Ω (I(x)− µ)2dx;θ ← θ + µ∇θ

(
Nl

∑
k=1

Var(I k)

)
end for

end for
5: Update the spatio-temporal window: tn+1 = tn + 3/θn

average
Step 3: Updating the template edges using the optical flow and IMU data
6: Update the postion of feature points: xi(t1) = xi(t0) + v.(t1 − t0)

7: Update the relative position: xrelative
j (t1) = Nor

(
KRjK−1xj(t0)

)
− Nor

(
KRjK−1xi(t0)

)
8: Update the postion of edge points: xj(t1) = xrelative

j (t1) + x(t1)

Step 4: Computing the depth value of template edges using a depth filter
9: Triangulation depth: yi
10: Depth filter: q(y, π|ai, bi, µi, σi)= Beta(π|a i, bi)N(y | ui, σ2

i
)

Input: Triangulation depth: yi
Output: depth value y

for i = 1 : n do
µ′i = C′1mi + C′2µi; σ′i

2 = C′1
(
y2

i + m2
i
)
+ C′2

(
σ2

i + µ2
i
)

fi = C′1
ai + 1

ai + bi + 1 + C′2
ai

ai + bi + 1

ei = C′1
(ai + 1)(ai + 2)

(ai + bi + 1)(a + bi + 2) + C′2
ai(ai + 1)

(ai + bi + 1)(ai + bi + 2)

a′i =
ei− fi

fi−
ei
fi

; b′i =
1− fi

fi
· a′i ;

1
y2

i
= 1

σ2
i
+ 1

τ2
i

; mi = y2
i

(
µi
σ2

i
+ xi

τ2
i

)
end for
Step 5: Pose estimation using the ICP agorithm

11: ICP agorithm: (R, t) = argmin
R∈SO(3),t∈R3

n
∑

i=1
wi ‖ (Rpi + t)− qi ‖2

Output
6−DoF event camera pose translation ∈ R3, rotation ∈ SO(3).

4. Experiments

In order to demonstrate the performance of our proposed algorithm, some widely
used event datasets were utilized to estimate camera trajectories. These datasets were
generated using the DAVIS240C from iniLabs, and they contain events, images, and IMU
measurements. The algorithm was evaluated by selecting some challenging sequences
from the IJRR event camera datasets [33]. The sequences are from several indoor and
outdoor scenes with different lighting conditions. Experiment 1 and Experiment 2 were
evaluated indoors. Compared with Experiment 1, Experiment 2 had richer scene textures.
In Experiment 3, the camera trajectory was evaluated outdoors. In several experiments,
the camera trajectories obtained by our method were compared with frame-tracking-based
(ORB) visual odometry and event-tracking-based (EVO) visual odometry, and we also
compared the trajectories of our method with and without IMU data. Among the methods
tested, only ours uses IMU data to calibrate rotation. The absolute pose error was calculated
between the poses estimated by other algorithms and our method and the ground truth.

In the IJRR datasets [33], we selected representative scenes for trajectory estimation.
We tested different visual odometry methods on three sequences: shapes_6dof, boxes_6dof,
and outdoors_6dof. Figures 5–7 show the test results of the different algorithms on the
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three sequences. These figures show the trajectories produced by visual odometry such
as Our_method, ORB, and EVO. Table 1 shows the position error, orientation error, and
absolute pose error of different methods compared to the ground truth in different scenarios.
The position error was calculated as the Euclidean distance between the estimated value
of the camera trajectory and the true value. Rotation error was computed as the angular
error based on the estimated and true values of the rotation matrix. The absolute pose
error compares the estimated trajectory and the reference trajectory and calculates the
statistics of the entire trajectory, which is suitable for testing the global consistency of the
trajectory. Furthermore, to reflect the contribution of the IMU to the estimation calibration,
we obtained the results of our method on the shapes_6dof, boxes_6dof, and outdoors_6dof
sequences without fusing the IMU data.
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Figure 6. VO Experiment 2 (boxes_6dof): (a) 3D event camera trajectories estimated by different
algorithms; (b) Comparison of absolute pose errors between different algorithms; (c) The translation
position of the camera estimated by different algorithms; (d) The rotation position of the camera
estimated by different algorithms.
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algorithms; (b) Comparison of absolute pose errors between different algorithms; (c) The translation
position of the camera estimated by different algorithms; (d) The rotation position of the camera
estimated by different algorithms.

Table 1. Absolute pose error (m/s), position error (m/s), and rotation error (deg/s) test results in
different scenarios with different methods [33].

Sequences Our_Method ORB Our_Method
(+IMU) EVO

Absolute
pose error

shapes_6dof 0.0815 0.0780 0.0315 0.0435
boxes_6dof 0.0434 0.0369 0.0204 0.0344

outdoors_6dof 0.1416 0.2357 0.0461 0.0227

Position
error

shapes_6dof 0.1562 0.0845 0.0391 0.0496
boxes_6dof 0.2255 0.0956 0.0436 0.0586

outdoors_6dof 0.1728 0.0735 0.0325 0.0265

Rotation
error

shapes_6dof 2.4562 1.8342 0.6443 0.9093
boxes_6dof 3.5432 1.6901 0.5426 0.5084

outdoors_6dof 3.4734 1.6042 0.4453 0.7253
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In Experiment 1 (Figure 5), we tracked simple shapes using different visual odometry
methods. As the camera movement speed increases, the resolution of the captured image
gradually decreases. The ORB method does not extract enough feature points, which leads
to tracking failure. Thus, we chose a tracking duration of only 35 s. The position errors of
the different methods were 15.62 cm, 8.45 cm, 3.91 cm, and 4.96 cm for Our_method, ORB,
Our_method(+IMU), and EVO, respectively. The rotation errors of the different methods
were 2.46 deg, 1.83 deg, 0.64 deg, and 0.91 deg for Our_method, ORB, Our_method(+IMU),
and EVO, respectively. In Experiment 2 (Figure 6), the natural textures in the box scene are
richer and also generate more event information. Since the EVO algorithm tracks the camera
trajectory through pure event information, too many event streams cause the tracking time
to be longer. The position errors of the different methods were 22.55 cm, 9.56 cm, 4.36 cm,
and 5.86 cm for Our_method, ORB, Our_method (+IMU), and EVO, respectively. The
rotation errors of the different methods were 3.54 deg, 1.69 deg, 0.54 deg, and 0.51 deg for
Our_method, ORB, Our_method (+IMU), and EVO, respectively. In Experiment 3 (Figure 7),
we evaluated several methods on outdoor datasets. The position errors of the different
methods were 17.28 cm, 7.35 cm, 3.25 cm, and 2.65 cm for Our_method, ORB, Our_method
(+IMU), and EVO, respectively. The rotation errors of the different methods were 3.47 deg,
1.60 deg, 0.45 deg, and 0.73 deg for Our_method, ORB, Our_method (+IMU), and EVO,
respectively. The mean scene depth was 3 m. Overall, our algorithm performed slightly
better than EVO in tracking performance and far outperformed ORB, but our tracking time
was much faster than that of EVO in complex textured scenes. Our algorithm provides
low-latency pose updates and preserves the nature of event-based data. These results
represent the success of fusing frames and events for tracking in natural scenes and 6-DoF
motion.

5. Conclusions

In this paper, we presented a novel visual odometry algorithm based on the DAVIS.
The initial tracking template was extracted from the image sequence. A contrast maximiza-
tion algorithm was presented to estimate the optical flow estimated by minimizing the
distance between the event and the templates in the spatio-temporal windows. Then, IMU
data were used to calibrate the rotational position of the tracking template. A Beta-Gaussian
distribution depth filter was presented to update the depth of each pixel on the edge of
templates. These templates were used to achieve lower-latency camera trajectories by the
ICP algorithm. We tested our method on several scenes with different textures in the DAVIS
dataset. Compared with the visual odometry algorithm ORB and EVO, the proposed
algorithm showed more advantageous performance in terms of accuracy and robustness.
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