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Angle measurement stability and cycle counting accuracy of hours-long 
duration IMU based arm motion tracking with application to normal 
shoulder ADLs 
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A B S T R A C T   

Background: Inertial measurement units are increasing used for monitoring joint motion, but there is a need to 
demonstrate their suitability during hours-long continuous use, as well as a need for validated methods to count 
arm cycles and provide descriptions of typical cycles. 
Research question: Do IMU sensors and rainflow counting have sufficient accuracy for tracking and cycle counting 
of hours-long continuous arm motion? If so, what are the cycle rates of normal arm ADL and is there a repre
sentative cycle that can serve as a ‘gait cycle’ for the arm? 
Methods: IMU sensors continuously tracked a robot performing 8 h of simulated cyclic arm motion. Error in the 
angle measurements was regressed against time to determine the rate of error and the total accumulated error. 
Additionally, the cycle count accuracy of rainflow, peak/valley, and Fourier transform counting methods was 
evaluated. 
Results: Over 8 h the IMU measurements accumulated a maximum 0.473◦ of error and the rainflow method 
counted cycles with less than 1% error. Applying rainflow counting to normal shoulder ADL resulted in an 
average rate of 533 elevation cycles per day.Tabulating the ADL cycles by mean and range values into a matrix 
and calculating the centroid, the single best values representing arm elevation cycles were a mean of 22.4◦ and a 
range of 21.6◦. 
Significance: IMU sensors can track arm motion for 8 h with little increase in error, though during longer du
rations error may reach unacceptable levels. For normal arm ADL, the rainflow determined count of arm 
elevation full-cycles differed from previous estimates based on peak/valley counting. From the rainflow 
counting, a single cycle representation of cycle mean and range was determined that can be used as a ‘gait cycle’ 
for the shoulder   

1. Introduction 

Inertial Measurement Units (IMUs) are convenient for joint motion 
tracking outside of laboratory settings because of their low cost and ease 
of use. Reports have established the accuracy of IMU sensors when 
capture durations are seconds to minutes long [1], but longer times may 
be needed for occupational, recreational, and therapeutic applications 
[2–6]. However, IMU sensors may be influenced by drift of the gyro
scopes and electromagnetic interference [1,3,7,8] and there is little 
evidence demonstrating how error may accumulate during hours-long, 
continuous use. Obtaining accurate hours-long IMU based motion 
tracking would also be useful for establishing cycle counts of upper arm 
motion during activities of daily living (ADL). 

Cycle counts are used to benchmark orthopedic implant fatigue 
testing, patient activity levels, and in assessing workplace related in
juries [2–4,9,10], but there is a scarcity of reports addressing arm cycle 
counting methods and their accuracy. For hip/knee joints, gait is 
recognized as the most frequently performed activity [11] and the pre
dominantly planar motion of hip/knee joints simplifies cycle identifi
cation and counting. Because of this simplicity, pedometers have been 
sufficient for cycle counting [12]. 

For the upper arm, cycle identification and counting has been 
hampered the lack of a recognized dominate activity [11]. Further, 
unlike hip/knee gait motion which consists of a series of organized, 
repeated cycles, upper arm motion during unrestricted ADL (containing 
multiple activities) may not organize into a series of repeating cycles. 

E-mail address: Bryan.Kirking@enovis.com.  

Contents lists available at ScienceDirect 

Gait & Posture 

journal homepage: www.elsevier.com/locate/gaitpost 

https://doi.org/10.1016/j.gaitpost.2022.11.020 
Received 8 July 2022; Received in revised form 26 October 2022; Accepted 29 November 2022   

mailto:Bryan.Kirking@enovis.com
www.sciencedirect.com/science/journal/09666362
https://www.elsevier.com/locate/gaitpost
https://doi.org/10.1016/j.gaitpost.2022.11.020
https://doi.org/10.1016/j.gaitpost.2022.11.020
https://doi.org/10.1016/j.gaitpost.2022.11.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gaitpost.2022.11.020&domain=pdf


Gait & Posture 100 (2023) 27–32

28

Because of these challenges, and the relative newness of IMU sensors, 
there are few studies describing cycle counting of three dimensional arm 
motion during unrestricted ADL. 

When a specific task or activity is being monitored, such as during 
repetitive workplace tasks, cycle counting algorithms may be trained to 
recognize a target cycle [13]. More generalizable frequency-based 
methods that use a representative frequency [4,6] have also been 
described. However, due to the irregularity of ADL motion, methods that 
make fewer assumptions about the signal may demonstrate better 
performance. 

ASTM E1049 ‘Cycle Counting in Fatigue Analysis’ describes a 
“compilation of acceptable procedures for cycle-counting methods” and 
has been applied to structures where loading often appears random. It is 
hypothesized that due to the unorganized appearance of upper arm 
motion, the rainflow counting method from E1049 would be well suited 
to cycle counting. 

The aims of this study were to demonstrate the error accumulation 
during hours-long, continuous IMU monitoring of joint motion, verify 
the cycle counting accuracy of methods when applied to IMU cyclic 
motion data, and finally demonstrate rainflow cycle counting on pre
viously collected hours-long ADL of the upper arm. 

2. Methods 

2.1. Robot setup 

A Fanuc M-201A robot was programmed to simulate idealized upper 
arm cycles. A robot was used rather than humans to obtain controlled, 
consistent, and repeatable motion cycles over a continuous 8-hour 
duration representing a typical work shift. Additionally, the use of the 
robot allowed rigid mounting of the IMU to isolate sensor error and 
avoid confounding effects from soft tissue. The idealized motions were 
flexion-extension (FE) from − 30–60◦ (0◦ with arm at side), adduction- 
abduction (AA) from − 15–60◦ (0◦ with arm at side), and internal- 
external (IE) from − 80–30◦ (0◦ aligned with frontal plane normal, in
ternal rotation negative) motions (Fig. 1-top) performed at a constant 
angular velocity and representing typical joint angles expected during 
ADL [6,10,14,15] The robot performed serial motion of each FE/AA/IE 
four times and then the robot torso and arm segments were simulta
neously rotated 20◦ in the horizontal plane. The FE/AA/IE motions were 
then repeated at a higher velocity as shown in Fig. 1-bottom for a total of 
four velocities (7.5, 15, 30, and 60◦/sec) representing the bandwidth of 
human speeds [8]. After the fastest velocity, the robot torso and arm 
were simultaneously rotated in the horizontal plane, back to the starting 
position and the entire sequence was repeated continuously for 8 h 
resulting in 712 cycles each of FE, AA, and IE. 

2.2. IMU sensors and optotrak 

The IMU sensor data was used to calculate three dimensional arm 
angles using an Unscented Kalman filter [6]. To match the sensor con
figurations described in [6], one APDM Opal v1 IMU sensor was rigidly 
attached to the robot in a vertical position corresponding to a human 
torso sensor placed on the manubrium. A second Opal v1 sensor was 
rigidly attached to another segment that had 3 rotational degrees of 
freedom from the trunk sensor and in a position corresponding to the 
lateral aspect and aligned with the long axis of a human arm. The initial 
orientation of the sensors was recorded and usde to establish the neutral 
position. An Optotrak Certus video tracking system with 4 active marker 
flags attached on the arm segment of the robot captured the first full 
sequence of motion (4 FE/AA/IE motions at 4 velocities) at the start of 
each hour to use as the ground truth. As the Optotrak measurements 
could not be recorded continuously, the 8 Optotrak files from each hour 
were coarse synchronized to the corresponding section of the IMU data 
using the file save times and then further refined by manually aligning 
the data point of the first flexion/extension peak from each Optotrak file 

to the corresponding IMU flexion/extension peak data point. This opti
mized comparing the angle estimates but removed timing/synchroni
zation differences between the systems which was beyond the intended 
scope. 

2.3. Temporal error analysis of the IMU data of robot motion 

For each hour, the IMU determined angles were resampled from 
128 Hz to the Optotrak frequency of 100 Hz and the averaged absolute 
error (AAE) was calculated. The AAE average was then plotted by hour 
and a linear fit of AAE and elapsed time was used to estimate the rate of 
accumulated AAE and the total accumulated AAE over the 8 h collection 
time. 

2.4. Verification of cycle counting methods 

Three counting methods were performed to evaluate their accuracy 
for counting arm cycles. The counting methods were a Fourier transform 
with median power frequency (MPF), peak/valley, and rainflow. FFT/ 
MPF counting was done using Python library FFT functions, calculating 
the MPF, and then multiplying the MPF by the trial duration [6]. The 
rainflow counting and peak/valley counting were performed using the 
python module fatpack (Gunnstein Thomas Frøseth). Note that rainflow 
counting identifies half cycles and then matches to a similar, opposite 

Fig. 1. Top- Relative timing of flexion-extension (solid), adduction-abduction 
(dashed), and internal-external (dotted) simulated arm rotations. Bottom- Full 
sequence of simulated arm motions. Vertical lines indicate where 
speed changed. 
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half cycle to produce full cycle counts, unlike peak/valley which only 
provides half cycles counts. 

Counting methods were conducted on four test signals with known 
cycle counts: a sine wave at 0.1 Hz, the initial 16 robot arm FE cycles 
measured with the Optotrak, the initial 16 robot arm FE cycles measured 
from IMUs, and the full 8-hour robot FE data measured from IMUs. 

Before counting, signals were low pass filtered at 8hz with a But
terworth filter to remove frequencies higher than expected human 
movement [8]. During peak/valley counting, a 10◦ threshold was used 
to eliminate ‘non-deliberate’ motions as described by Langohr [10]. To 
be consistent, rainflow counts were racetrack filtered at 10◦ before 
counting. The rainflow bin size was set to 4 degrees (90 bins over 
+/− 180◦). The cycle rate was then estimated by dividing the number of 
rainflow counted cycles by the total trial duration. 

2.5. Application of cycle counting to arm motion from previous data 

Using previously reported data of normal subjects performing un
restricted work and recreational ADL [6], the rainflow cycle counts, 
peak/valley counts, and cycle rate were determined for each subject and 
trial. An output of the rainflow counting method is a matrix that tabu
lates the number of cycles for each mean and range combination. For the 
ADL data, the centroid of the rainflow matrix for each subject and trial 
was calculated by multiplying the mean and range values by the squared 
number of observations and dividing by the total number of observa
tions squared. 

3. Results 

3.1. Temporal error analysis of the IMU data of robot motion 

The FE, AA, and IE motions from the first hour of cycles is shown in  
Fig. 2. In Fig. 2A, all three IMU angles are shown together to demon
strate the sequence of rotations. In Fig. 2B to Fig. 2D, the IMU angles are 
shown as a solid line with the corresponding Optotrak angles shown as a 
dashed line to demonstrate the relative accuracy of the IMU. 

For all angles, the shape of the IMU angle was well matched to the 
Optotrak. IMU IE showed the most error relative to the Optotrak IE with 
the largest difference occurring primarily in the neutral / zero velocity 
portion of the IE curve. 

Fig. 3 shows the AAE plotted by hour to demonstrate the error 
accumulation in each hour. Additionally, the associated linear regres
sion line for each motion plane is plotted to demonstrate the overall 
error accumulation rate. The regression indicated that the rate of AAE by 
hour was 0.016◦/hr for FE, 0.009◦/hr for AA, and 0.059◦/hr for IE. At 
these error rates, the total increase in AAE over 8 h for FE, AA, and IE 
was 0.130◦, 0.071◦, and 0.473◦ respectively. The associated percent 
increase in AAE over 8 h from the initial period was 17.6 % for FE, 6.8 % 
for AA, and 11.3 % for IE. 

3.2. Verification of cycle counting methods 

The number of counts from each method on the test signals is shown 
in Table 1. For the sine wave with 6 full cycles (12 half cycles), both the 
FFT/MPF and rainflow methods produced the correct full cycle count. 
The peak/valley counted 13 half cycles. Note that the peak/valley 
counts are half cycles rather than full cycles. 

For the Optotrak/robot trial, rainflow produced the actual full cycle 

Fig. 2. A) [Top,left]: Flexion-extension (solid), abduction-adduction (dashed), and internal-external (dotted) motions measured from the IMU data. Superimposed 
IMU (solid) and Optotrak (dashed) motions in Flexion-extension B)[Top,right], abduction-adduction C)[Bottom,left], and internal-external rotation D)[Bottom, 
right]. Arrow points to the largest error which occurred during the still portion of IE rotation. 
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count of 16. The peak/valley method produced 39 half cycles which was 
seven half cycles greater than the expected 33 half cycles. The FFT/MPF 
method produced 50 full cycles which was 34 more than actual. 

For the IMU/robot trial, rainflow produced the actual full cycle count 
of 16. The peak/valley method produced 49 half cycles which was 17 
half cycles greater than the expected 32 half cycles. The FFT/MPF 
method produced 50 full cycles which was 34 more than actual. When 
counting the complete 8-hour trial with 712 full cycles, rainflow counted 
718 full cycles (<1 % error), peak/valley counted 2155 half cycles (730 
greater than the expected 1425 half cycles, 51 % error) and FFT/MPF 
counted 2648 full cycles (1936 greater than actual, 272 % error). 

3.3. Application of cycle counting to arm motion from previous data 

The rainflow cycle counting and peak/valley counting methods of 
the IMU data from ADLs is presented in Table 2. Cycle counts of arm 
angles ranged from 450 to 1118 full cycles per hour (fcph) from the 
rainflow method and half cycles ranged from 1071 to 3266 half cycles 
per hour (hcph) using peak/valley. The centroid of the rainflow matrix 
for each arm angle produced cycle means/ranges of: elevation 22.4◦ / 
21.6◦, elevation plane heading 87.1◦ / 40.2◦, FE 3.8◦ / 22.0◦, AA − 2.9◦

/ 22.0◦, and IE − 13.1◦ / 25.1◦. 

4. Discussion 

4.1. Temporal error of IMU tracked robot motion 

IMU predicted arm angles tracked well against the Optotrak 
measured angles with AAE on the order of 1◦ or less and IE AAE of about 
4◦. These baseline errors were in the reported ranges for IMU mea
surements of shoulder kinematics [16,17]. FE demonstrated an 

accumulated error of 0.13◦, which combined with the smallest time zero 
error of 0.74◦ created the largest percentage error of 17.6◦. IE had the 
largest AAE accumulation of 0.47◦ (11.3 %) as was expected because the 
pure horizontal plane rotations of the arm and torso segments represent 
a challenge condition due to the lack of a consistent reference for 
heading. These data demonstrated that when using an Unscented Kal
man filter algorithm to estimate arm joint angles from IMU sensors, error 
accumulation did occur over an 8 h duration and exceeded 10 % of the 
time zero AAE. It should be noted that the IMUs were firmly attached to 
the robot segments and would not include errors due to IMU motion 
relative to the underlying joint segments such as slipping of the sensors, 
or errors due to differences in skin/bone motion. Further, the range of 
studied angles did not include angles near the extreme range of motion 
which are infrequent but could lead to issues such as gimble lock. 

4.2. Verification of cycle counting methods 

Across all validation trials, rainflow counting produced the most 
accurate cycles counts, with less than 1% error in the full 8-hour IMU/ 
robot trial. 

The peak/valley counting method was tested to recreate the counts 
described in Langhor [10]. While both peak/valley and rainflow begin 
by counting single directional motions from reversals, rainflow takes an 
additional step to match the directional motions to form full cycles. 
Because peak/valley counting does not pair into full cycles, peak/valley 
was expected to over count full cycle counts by about 2:1. Peak/valley 
counting performed well for the sine wave trial but count error increased 
to 22% on the robot/Optotrak trial and reached 51% on the full 8-hour 
robot/IMU trial, even when accounting for the difference in half-cycles / 
full-cycles. 

The FFT/MPF had the largest errors of the counting methods. The 
error in the FFT/MPF may partially result from the FFT fitting high 
frequency components in order to reproduce the triangular wave form of 
the robot motion. Further, trying to represent a complex power spectra 
like the ADLs where the underlying signal is not necessarily periodic 
with a single representative frequency maybe insufficient. More com
plex frequency domain techniques [18,19] may be better suited for 
analyzing arm cycles of ADL. 

4.3. Application of cycle counting to arm motion from previous data 

Using the peak/valley counting method on ADL elevation of normal 
arms tracked with IMUs resulted in a cycle rate of 1183 half-cycles/hr. 
Langohr [10] reported half-cycle counts of 820 half-cycles/hr in post 
operative arthroplasty shoulders that were at least 1 year post implan
tation and 842 half-cycles/hr in the contralateral, unoperated shoulder. 
The larger count for the normal shoulders is likely due to a difference in 

Fig. 3. Averaged absolute error in angle estimates during each hour. Arrows 
indicates the accumulated AAE in internal-external rotation after 8 h of 
continuous collection. 

Table 1 
Cycle counts produced by the three counting methods on four test signals.   

Actual 
Cycles 

FFT/ 
MPF 

Peak/ 
Valley 

Rainflow 

Sine wave, 0.1 Hz  6  6  13  6 
Robot-Optotrak cycles 1–16 

of F/E  
16  50  39  16 

Robot-IMU cycles 1–16 of F/E  16  64  49  16 
Robot IMU cycles 1–712 of F/ 

E (8 hrs)  
712  2648  2155  718  

Table 2 
Cycle rates of normal shoulder ADL and the centroid of the Rainflow matrix. 
Cycle rates are per hour.  

Motion Axis  Rainflow full 
cycle rate 

Peak/Valley 
half-cycle rate 

Mean Range   

fcph hcph deg deg 

Upper arm 
elevation 

mean  533  1183  22.4  21.6  

std  180  401  5.1  2.4 
Angle of the arm 

elevation plane 
mean  1118  3266  87.1  40.2  

std  362  1047  6.3  10.4 
Flexion/Extension mean  450  1080  3.8  22.0  

std  136  339  7.8  2.8 
Abduction/ 

Adduction 
mean  478  1071  -2.9  22.0  

std  179  396  9.3  5.3 
Internal/External mean  617  1440  -13.1  25.1  

std  201  488  9.8  2.7  
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age-related activity levels of the two study populations. 
Using the FFT/MPF method, a 10 year cycle value of 649,009 cycles 

was previously calculated [6] for the same IMU-ADL data set reanalyzed 
in this study. Given the poor performance demonstrated by the FFT/MPF 
method on the validation signals, that previous estimate is likely inac
curate compared to the rainflow counted cycles. 

Using the rainflow average elevation cycle rate and assuming 8 h of 
work and 8 h of recreation each day extrapolates to an estimated 28 
million elevation full-cycles for a 10-year period. 2740 cycles per day 
(10 million cycles per 10 years) is often used in testing lifetime perfor
mance of hip and knee devices, though a recent review reported that 
healthy adults over 20 years of age perform closer to 7000 cycles per day 
(25.5 million per 10 years). The rainflow based count of the arm ADL 
data of 450 flexion/extension cycles per hour equates to 7206 cycles per 
day (26.3 million per 10 years). As people tend to swing their arms in 
flexion/extension during gait [20], the number of non-gait related, 
‘deliberate’ (> 10 degrees) flexion-extension arm cycles appears to be in 
the range of 206 cycles/day to 4466 cycles/day. 

4.4. Representing a typical arm motion cycle 

An example of the rainflow matrix of the observed cycles from the 
normal ADL IMU motion is shown in Fig. 4. The example demonstrates 
that the matrix cells with the largest counts were clustered near a cycle 
mean of 18◦ and cycle range of 14◦. Cycle counts then reduced and 
spread out with increasing cycle mean and range. This distribution is 
similar to the report by Langhor [10] who noted the largest amount of 
time was spent with the arm between 20◦− 40◦ of elevation with 
decreasing amounts of time spent at angles above 40◦. 

To determine a single value of cycle mean and cycle range that 
represented the full matrix of cycles, the centroid of the matrix obser
vations was calculated by weighting the mean and range by the square of 
the observations. Two other approaches that were explored included 
using the matrix cell with the largest number of observations and taking 
the weighted average of the mean and range observations. The cell with 
the most observations was discarded because it was inconsistently 
located among the trials. The weighted average was discarded because it 
appeared to be overly influenced by cells that had large cycle mean or 
cycle range values but a corresponding small number of observations. 

Across all ADL trials, the average of the centroids from each rainflow 
matrix of arm elevation resulted in a cycle mean of 22.4◦ and a cycle 
range 21.6◦. Note that because elevation is always positive, the mean of 
the elevation cycle was not centered near 0◦ as it was for flex
ion–extension and abduction–adduction. The plane of the elevation had 
a cycle mean and range of 87.1◦ and 40.2◦ and the internal-external 
rotation of the humerus had a cycle mean and range of − 13.1◦ (inter
nally rotated) and 25.1◦. These cycle mean and range values represent 
the most typical motion of normal shoulders and could be used as a ‘gait 
cycle’ of the upper arm when evaluating shoulder function or for con
ducting lifetime testing and simulations of treatments and devices such 
as total joint replacements. 

5. Conclusion 

Using a robot to simulate arm motion for eight continuous hours, 
IMU based angle measurements demonstrated a maximum accumulated 
average absolute error of 0.473◦, but longer duration tasks could 
develop unacceptably large error. Using the same robot simulated mo
tion, rainflow cycle counting demonstrated an error of less than 1%. 
Applying rainflow counting to previously collected IMU data on the 
ADLs of normal shoulders produced 533 full cycles of arm elevation per 
hour. Finally, rainflow counting on IMU collected arm ADL motion was 
used to determine a cycle mean and range value which can be used as a 
‘gait cycle’ for the shoulder. For arm elevation, the cycle mean was 22.4◦

and the cycle range was 21.6◦. 
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