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A B S T R A C T   

The Strapdown inertial navigation system (SINS) requires the precise attitude, whereas the deflection of the 
vertical (DOV) is normally ignored in alignment. To solve the issue of orientation and position errors caused by 
DOV, a novel DOV calculation method, estimated by misalignment angles based on single-axis rotating modu
lation, is proposed. The theoretical limit error equation of attitude angle, affected by the coupling of inertial 
measurement units (IMU) errors and DOV, has been specifically derived based on the inertial frame alignment 
theory. It is pointed out that the DOV components directly affect the values of misalignment angles, coupling 
with horizontal accelerometer errors. Moreover, the specific process of combining coarse alignment of inertial 
frame and fine alignment of Kalman filter method is presented. Finally, the experiment analysis validates the 
performance of the proposed method and correctness of the theoretical analysis, where the estimation accuracies 
of DOV components are 0.349′ ′ and 0.479′ ′ respectively.   

1. Introduction 

HE initial alignment is the first and significant step for strapdown 
inertial navigation system (SINS) to achieve high-precision position and 
orientation, which is mainly obtaining the initial coordinate trans
formation matrix from the body frame (b) to the navigation frame (n, 
ellipsoid normal plane) as the initial condition for the following navi
gation calculation [1–4]. For the traditional SINS navigation process, 
due to the limitation for the precision of inertial measurement units, the 
plump line on the geoid and the normal line on the ellipsoid are 
considered as the same ignoring the influence of DOV. However, with 
the development of inertial technology and requirements of high- 
precision navigation in recent decades, the DOV has become one of 
the main error sources in initial alignment and navigation [5–7]. 

As the irregular surface and uneven internal density of the Earth, the 
ellipsoid, resembling the geoid, was put forward to briefly describe the 
gravity field of the Earth in navigation and orientation [8–10]. The 
difference between the two definitions (geoid and ellipsoid) derivate the 
definitions of gravity disturbance vector (GDV) and DOV, which were 
specifically introduced in chapterIII. Hence, the analysis of error influ
ence and the effective measurement of GDV and DOV in SINS have 
become the top issue in improving the precision of navigation and 

orientation. In this respect, Hanson et.al [11] investigated the correla
tion between the DOV and uncalibrated zero biases of accelerometers in 
initial alignment. Jekeli et.al [12] analyzed the precision improvement 
of inertial navigation system (INS) after GDV compensation. Unfortu
nately, the corresponding conclusions were qualitative and not univer
sal. Fang et.al [13] investigated the gravity compensation method for 
airborne position and orientation system. Chang et.al [14] investigated 
the GDV compensation for INS and analyzed the performances of INS in 
different compensation cases. In addition, Kwon et.al [15] investigated 
the requirements for gravity compensation in Ultra-precise INS. Zhu et. 
al [16] proposed a real-time gravity compensation method for attitude 
calculation based on Kalman filter and constructed a Markov model 
based on the gravity map. Due to the precision improvement of gravity 
field spherical harmonic models (SHM), utilizing the SHM to conduct 
DOV compensation for initial alignment and navigation has also become 
another topic. Wang et.al [17] discussed the accuracy of truncated SHM 
for application in INS. Tie et.al [18] investigated the effect of horizontal 
gravity disturbance compensation for high-precision INS. Wu et.al [19] 
investigated the gravity compensation effect using EGM2008 for long- 
term INS. 

From the perspective of DOV calculations, the astrogeodetic, gravi
metric, levelling measurement and Global Satellite System (GNSS) based 
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satellite methods are the most common means for DOV determination in 
recent decades. Utilizing the astronomic and geodetic latitudes and 
longitudes of the same point is the principle of astrogeodetic methods, 
where the most classical representative is observing the astronomic 
coordinates by digital zenith camera system [20]. However, restriction 
by weather and inefficient measurement restraint this method’s appli
cation. In recent years, the DOV calculation based on SINS/GNSS, which 
adopting the attitude difference patten, has been developed a main
stream. Dai et.al [21] constructed the model of attitude reference error 
and inertial sensors errors. Zhu et.al [22] investigated the attitude dif
ference method to estimate DOV in real time. Hao et.al [23] analyzed 
the attitude error caused by DOV in INS/GNSS base. An et.al [24] 
investigated the estimation of attitude angles based on fading memory 
Kalman filter after DOV compensation. However, most efforts of the 
previous work are almost either devoted to constructing the attitude 
reference model based on GNSS or directly compensating the DOV in 
INS without specific error analysis of DOV based on the theory of initial 
alignment. With this consideration, this paper specifically derived the 
error influence principle of DOV in inertial frame alignment and pro
posed the DOV calculation method by misalignment angular observa
tion based on single-axis rotation. 

The contents are organized as follows: the reference coordinate 
frames are briefly defined in Section II; Section III describes the defini
tions of the gravity field and theory of inertial frame alignment; the error 
equations of SINS and error analysis of DOV based on inertial frame 
alignment are specifically described in Section IV; in Section V, the DOV 
calculation process based on single-axis rotation is introduced and the 
Kalman filter model is constructed; the experiments are conducted in 
Section VI; eventually, conclusion are presented in Section VII. 

2. Reference frame definitions 

In the inertial space, there are six degrees of freedom during the 
carrier movement including three angles and linear movements 
respectively. Consequently, the carrier motion can be precisely 
described by angular and linear movements in three directions. For the 
strapdown inertial navigation system, the navigation calculation will 
inevitably involve several reference frame definitions, and the attitude 
calculation is based on vector transformation between the different 
frames. Therefore, the several frames involved in this paper are illus
trated in this section.  

1) Inertial coordinate frame (i frame, OiXiYiZi). 

Generally, the center of the reference ellipsoid model is selected as 
the coordinate origin, the OiZi axis points to the north pole along the 
direction of the earth’s axis, and the OiXi and OiYi axes located in the 
earth’s equatorial plane. The i frame is static with respect to the distant 
galaxies.  

2) Geographic coordinate frame (g frame, OgXgYgZg). 

It is defined that the origin of the coordinates is located at the center 
of mass of the carrier, the OgXg axis and the OgYg axis located in the local 
horizontal plane, and point to the east and north directions respectively, 
and the ellipsoid normal direction of the OgZg axis points to the up that 
is, “E-N-U”.  

3) Navigation coordinate frame (n frame, OnXnYnZn). 

The navigation coordinate frame is defined as a unified frame used 
for navigation calculations. The g frame is selected as the n frame in this 
paper.  

4) Body coordinate frame (b frame, ObXbYbZb). 

The mass center is defined as the origin of the b frame, and the ObXb, 
ObYb, and ObZb point to the right, front, and up of the carrier, 
respectively.  

5) Strapdown platform coordinate frame (n’ frame). 

Strapdown platform coordinate frame is defined as the navigation 
frame calculated by SINS, which has a small deviation from the real 
navigation coordinate frame (n).  

6) Body inertial coordinate frame (ib0 frame). 

It is defined the initial moment of the (b) frame in alignment. The ib0 
frame is stable relative to the inertial space.  

7) Navigation inertial coordinate frame (in0 frame). 

The initial moment of the (n) frame in alignment is defined as the 
navigation inertial coordinate frame. The ib0 frame is also stable relative 
to the inertial space.  

8) Inertial measurement units (IMU) coordinate frame (s). 

The origin of the coordinate is located at the origin of the acceler
ometer unit, and the three axes point in the direction of the nominal 
sensitive axis of the inertial sensors. While the IMU is no rotation relative 
to b frame, the s frame is consistent with b frame. 

3. Gravity field and initial alignment 

3.1. Definition of the gravity field 

The geoid was proposed in 1873, which is the gravity equipotential 
surface of the earth. Due to the geoid cannot be described by a mathe
matical model, the reference ellipsoid was put forward to approximate 
the geoid. Consequently, the gravimetric DOV is defined as the differ
ence between the plump line in the geoid and the normal line in the 
reference ellipsoid, as shown in Fig. 1. The DOV components in the west- 
to-east direction and the south-to-north direction are η, ξ respectively. 
As shown in Fig. 2, the difference between the true gravity vector on the 
geoid and the normal gravity vector on the reference ellipsoid is called 
the Gravity Disturbance Vector (GDV), which can be expressed as: 

δgn = [ − ηg0 − ξg0 Δg ]T (1)  

where g0 denotes the normal gravity value of a point, which can be 

Fig. 1. Gravimetric deflection of the vertical.  

S. Hao et al.                                                                                                                                                                                                                                     

http://et.al
http://et.al
http://et.al
http://et.al


Measurement 204 (2022) 112047

3

calculated by formula (2), Δg is defined as gravity anomaly that reflects 
the value deviation of the two gravity definitions, which can be 
expressed as formula (3). 

g0 = 9.780327 ×

(
1 + 0.00527094 × sin2L
+0.0000232718 × sin22L

)

− 0.3086 × 10− 5h (2)  

Δg = g − g0 (3) 

In terms of geodetic coordinate, L and B mean the geodetic latitude 
and longitude of a point, respectively, while in the astronomic coordi
nate, φ and λ reflect the astronomic latitude and longitude of the same 
point, respectively. 

3.2. Inertial frame alignment 

Initial alignment, calculation of attitude transformation matrixCn
b , is 

the process that determines the initial attitude of SINS. Inertial frame 
alignment is one of the most classical vector calculation methods, where 
the matrix Cn

b can be divided into the form of multiplying three matrices. 
The attitude matrix can be expressed as follows according to the char
acters. 

Cn
b = Cn

in0
Cin0

ib0
Cib0

b (4) 

where Cn
in0 

represents the rotation of the (n) frame relative to the (ino) 
frame, which can be calculated by the latitude of the carrier location (L) 
and time (t), shown as: 

Cn
in0

=

⎡

⎣
− sin[ωie(t − t0) ] cos[ωie(t − t0) ] 0

− sinLcos[ωie(t − t0) ] − sinLsin[ωie(t − t0) ] cosL
cosLcos[ωie(t − t0) ] cosLsin[ωie(t − t0) ] sinL

⎤

⎦ (5)  

where L is the latitude, ωie is the Earth’s rotation rate. 
In equation (4), Cib0

b represents the rotation of the body frame relative 
to the body inertial coordinate frame; its initial form is unity 
matrixCib0

b (t0) = I, The matrix Cib0
b (t) can be real-time updated from the 

gyroscope’s angle increment using the quaternion method based on 
differential equation (6). 

Ċib0
b (t) = Cib0

b (t)
(

ωb
ib0

×
)

(6) 

Therefore, the key to calculate the matrix Cn
b is solving the matrixCin0

ib0
. 

In this algorithm, the gravity vectorsgib0 (t1),gib0 (t2),gin0 (t1), and gin0 (t2) at 
two different moments in the ib0 and in0 coordinate frames are selected 
as reference vectors to calculateCin0

ib0 
, shown as equation (7). 

Cin0
ib0

=

⎡

⎢
⎣

[
gin0 (t1)

]T

[
gin0 (t1) × gin0 (t2)

]T

[
gin0 (t1) × gin0 (t2) × gin0 (t1)

]T

⎤

⎥
⎦

− 1⎡

⎢
⎣

[
gib0 (t1)

]T

[
gib0 (t1) × gib0 (t2)

]T

[
gib0 (t1) × gib0 (t2) × gib0 (t1)

]T

⎤

⎥
⎦

(7) 

By substituting the obtained matrixesCib0
b ,Cin0

ib0
,Cn

in0 
into equation (4) 

correspondingly, the attitude transformation matrix can be obtained. 
When projecting accelerometer measurements to the ib0 frame, the 
attitude change of the carrier caused by carrier disturbance can be 
tracked, which can effectively suppress the waggling disturbance of the 
carrier. 

4. Error analysis of inertial frame alignment 

4.1. Inertial navigation error equation considering DOV 

The mechanical arrangement of SINS is based on the specific force 
equation, shown as: 

V̇n
= Cn

b f b −
(
2ωn

ie + ωn
en

)
× Vn + gn (8)  

where Vn denotes the velocity of carrier in navigation frame, fb means 
the specific force measured by accelerometer. gn means the projection of 
true gravity vector in navigation frame. ωn

en denotes the angle rate be
tween the e frame and n frame. 

Differentiate both sides of the above formula, the velocity error 
equation can be obtained as: 

δV̇n
= ( − ϕn × )f n + Cn

b∇
b −

(
2δωn

ie + δωn
en

)
× Vn

−
(
2ωn

ie + ωn
en

)
× δVn + δgn (9)  

where δVn means the velocity error, (ϕn × ) means the antisymmetric 
matrix of misalignment angle, ∇b denotes the constant zero bias errors of 
accelerometers. δgn means the gravity disturbance error, shown as for
mula (1). 

For the strapdown inertial navigation system, the attitude update 
follows with the attitude differential equation, shown as formula (10), 
while the attitude error equation can be obtained as formula (11). 

Ċn
b = Cn

b(ωb
nb×) = Cn

b(ωb
ib×) −

(
ωn

in ×
)
Cn

b (10)  

ϕ̇
n
= − ωn

in × ϕn − Cn
bεb + δωn

in (11) 

where
δωn

in = δωn
ie + δωn

en

= M1δVn + M2δp
,M1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −
1

RM + h
0

1
RN + h

0 0

tanL
RN + h

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

M2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
VN

(RM + h)2

− ωiesinL 0 −
VE

(RN + h)2

ωiecosL +
VEsec2L
RN + h

0
− VEtanL
(RN + h)2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, εb means the constant drift bias 

errors of gyroscopes, p reflects the position information, i.e, latitude, 
longitude and elevation p = [L λ h]T. 

It is indicated from formula (9) and (11) that the DOV firstly in
fluences velocity errors of carrier through the velocity channel, and then 
affect the attitude errors. Therefore, the DOV information should be 

Fig. 2. Gravity disturbance vector.  
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reflected in attitude errors of carrier. The error analysis of inertial frame 
alignment will be introduced in the next section. 

4.2. Error analysis of inertial frame alignment 

Under the ideal conditions, the attitude transformation matrix can be 
calculated by equation (4). However, due to the existence of IMU errors 
and the gravity field model error, the estimation of Ĉ

n
b should be 

calculated by the following formula: 

Ĉ
n
b = Ĉ

n
in0

Ĉ
in0

ib0
Ĉ

ib0

b (12)  

where the matrixesĈ
n
in0

,Ĉ
in0

ib0
, Ĉ

ib0

b include the error items respectively. 
Differentiate both sides of the above formula, the error equation is 

given by: 

δCn
b = δCn

in0
Cin0

ib0
Cib0

b +Cn
in0

δCin0
ib0

Cib0
b +Cn

in0
Cin0

ib0
δCib0

b (13) 

For the static-base alignment, due to the latitude of carrier and 
rotation angular rate of earth can be obtained precisely, the above for
mula can be simplified as: 

δCn
b = Cn

in0
δCin0

ib0
Cib0

b +Cn
in0

Cin0
ib0

δCib0
b (14) 

From the relation between the misalignment angle and attitude error 
matrix, the following formula can be obtained: 

δCn
b = − ϕn × Cn

b (15)  

δCin0
ib0

= − ϕin0
1 × Cin0

ib0
(16)  

δCib0
b = − ϕib0

2 × Cib0
b (17) 

Substitute the above equations into the formula (14), the formula can 
be rewritten as: 

− ϕn × Cn
b = − ϕn × Cn

ib0
Cib0

b

= Cn
in0

(
− ϕin0 ×

)
Cin0

ib0
Cib0

b + Cn
in0

Cin0
ib0

(
− ϕib0 ×

)
Cib0

b

(18) 

Multiply the matrix Cib0
n to both sides of the above formula, according 

to the theory of matrix similar changes, the simplified equation can be 
obtained as: 

− ϕn× = Cn
in0

(
− ϕin0 ×

)
Cin0

n + Cn
ib0

(
− ϕib0 ×

)
Cib0

n

= −
(

Cn
in0

ϕin0 ×
)
−
(

Cn
ib0

ϕib0 ×
) (19) 

Consequently, the misalignment angle (ϕn) of attitude error matrix 
(δCn

b) can be divided into two components, the projections (ϕn
1) and (ϕn

2) 
in (n) frame of the misalignment angle (ϕin0

1 ) and (ϕib0
2 ) respectively, 

shown as formula (20). 

ϕn =
(

Cn
in0

ϕin0
1

)
+
(

Cn
ib0

ϕib0
2

)

= ϕn
1 + ϕn

2

(20)    

1) misalignment angle ϕn
2 analysis. 

For the measurement of SINS, the gravity vector projection under 
inertial body frame (ib0) is generally calculated by specific force 

measured by accelerometers ( f̃
b
(t)), given by: 

g̃ib0 (t) = − Ĉ
ib0

b (t)f̃
b
(t) (21) 

According to the equation (7) and (21), the error of matrix (Ĉ
ib0

b (t)) 

also have an impact on the matrix (Ĉ
in0

ib0
(t)). Hence, the error of matrix 

(Ĉ
ib0

b (t)) is initially introduced in this section. 
When the measurement error of the gyroscopes is not considering, 

the matrix (Cib0
b ) follows with the equation (22), while on the contrary, 

the differential equation of matrix (Ĉ
ib0

b ) is given as equation (23). 

Ċib0

b = Cib0
b
(
ωb

ib ×
)

(22)  

˙̂C
ib0

b = Ĉ
ib0

b

(
ωb

ib + εb)×

= Ĉ
ib0

b

[(
ωb

ib ×
)
+
(
εb ×

) ] (23) 

The estimate matrix (Ĉ
ib0

b ), consisting of the true value (Cib0
b ) and 

error matrix (δCib0
b ), is given by: 

Ĉ
ib0

b = Cib0
b + δCib0

b =
(
I − ϕib0

2 ×
)
Cib0

b (24) 

Differentiate both sides of the above formula, the equation (25) can 
be obtained. 

˙̂C
ib0

b =

(

− ϕ̇
ib0
2 ×

)

Cib0
b +

(
I − ϕib0

2 ×
)
Ċ

ib0
b (25) 

Substitute the equation (23) and (24) into the equation (25), the 
formula is given by: 

(
I − ϕib0

2 ×
)
Cib0

b
(
εb ×

)
=

(

− ϕ̇
ib0
2 ×

)

Cib0
b (26) 

Known from the above equation (26), the differential equation of 

misalignment angle matrix (ϕ̇
ib0
2 ) can be obtain as: 

ϕ̇
ib0
2 = − Cib0

b εb (27) 

Integrate the above equation (26), the misalignment angle matrix 
(ϕn

2(t)) is given by: 

ϕn
2(t) = Cn

in0
(t)Cin0

ib0
ϕib0

2 = − Cn
in0
(t)

∫ t

0
Cin0

b (τ)εbdτ

= − Cn
in0
(t)

∫ t

0
Cin0

n (τ)εndτ
(28) 

For the static-base initial alignment, the attitude of carrier is con
stant, that isεn = Cn

bεb. Substitute the equation (29) (matrix Cin0
n ) into the 

equation (28) and simplified, the equation (30) can be obtained. 

Cin0
n =I+

sin(ωiet)
ωie

(ωn
ie×)+

1 − cos(ωiet)
ω2

ie
(ωn

ie×)
2

=

⎡

⎣
cos(ωiet) − sinLsin(ωiet) cosLsin(ωiet)

sinLsin(ωiet) cos2L+cos(ωiet)sin2L [1 − cos(ωiet)]sinLcosL
− cosLsin(ωiet) [1 − cos(ωiet)]sinLcosL sin2L+cos(ωiet)cos2L

⎤

⎦

(29)  

ϕn
2(t) =

1
ωie

⎡

⎣
− sin(ωiet) − sinL + cos(ωiet)sinL cosL − cos(ωiet)cosL

− sinLcos(ωiet) + sinL − sin2Lsin(ωiet) − ωietcos2L sinLcosL[sin(ωiet) − ωiet ]
cosLcos(ωiet) − cosL sinLcosL[sin(ωiet) − ωiet ] − cos2Lsin(ωiet) − ωietsin2L

⎤

⎦εn (30)   

S. Hao et al.                                                                                                                                                                                                                                     



Measurement 204 (2022) 112047

5

For the initial alignment time (t) is typically about two to five mi
nutes, the rotate angle of Earth (ωiet) is small amount, 
hence,sin(ωiet)≈ωiet,cos(ωiet)≈1. The equation (30) can be simplified as 
(31).  

ϕn
2(t) ≈

1
ωie

⎡

⎣
− ωiet 0 0

0 − ωiet 0
0 0 − ωiet

⎤

⎦εn = − εnt (31)    

2) misalignment angle ϕn
1 analysis. 

It is indicated from Section B. Chapter III that the transformation 
matrix (Cin0

ib0
) can be calculated by equation (7) without the measurement 

and gravity error. Considering the influence of DOV and IMU errors, the 

calculation value of matrix (C̃
in0

ib0
) is introduced by:  

C̃
in0

ib0
= Cin0

ib0
+ δCin0

ib0
= M̃

− T
in0

M̃
T
ib0

(32)   

where the vector matrixes under the inertial navigation frame (in0) and 
body frame (ib0) are respectively as follows:  

⎧
⎪⎨

⎪⎩

M̃
− T
in0

= M− T
in0

+ δM− T
in0

M̃
T
ib0

= MT
ib0

+ δMT
ib0

(33)  

Therefore, the equation (32) can be rewritten as:  

C̃
in0

ib0
= Cin0

ib0
+ δCin0

ib0
= Cin0

ib0
+
(
ϕin0

1 ×
)
Cin0

ib0

= M̃
− T
in0

M̃
T
ib0

=
(
Min0 + δMin0

)− T ( Mib0 + δMib0

)T

(34)  

At the same time considering the DOV and IMU errors, the second- 
order small amount of the coupling is ignored. The error matrix (δCin0

ib0
) 

can be divided into two components, the attitude transformation error 
matrix (δCin0

ib0 1) influenced by DOV and the error matrix (δCin0
ib0 2) introduce 

by IMU errors, shown as equation (35).  

δCin0
ib0

= δCin0
ib0

1+ δCin0
ib0

2 = δMin0 M− 1
ib0

+M− T
in0

δMT
ib0

(35)  

Compared the above equation and equation (16), the misalignment 
angle matrix (ϕin0

1 ) is given by:  

(
ϕin0

1 ×
)
=

(
δMin0 M− 1

ib0
+ M− T

in0
δMT

ib0

)
Cib0

in0

= δMin0 M− 1
ib0

Cib0
in0

+ M− T
in0

δMT
ib0

Cib0
in0

= M + N
(36)  

Consequently, the error matrix (ϕin0
1 ) can also be divided into two 

components, the alignment errors caused by DOV and IMU errors, to 
analyze.  

(1) M = δMin0 M− 1
ib0

Cib0
in0 

calculation. 

The vector matrix consisting of gravity vector in two different mo
ments (t1) and (t2) under the in0 frame can be described as: 

M̃in0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[g̃in0 (t1)]
T

‖g̃in0 (t1)‖

[g̃in0 (t1) × g̃in0 (t2)]
T

‖g̃in0 (t1) × g̃in0 (t2)‖

[g̃in0 (t1) × g̃in0 (t2) × g̃in0 (t1)]
T

‖g̃in0 (t1) × g̃in0 (t2) × g̃in0 (t1)‖

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Min0 + δMin0 (37)  

where the matrixes involved in the above equation can be described as 
following equations (38)–(41). The vectors g̃in0 (t1) and g̃in0 (t2) denote 
the projection of gravity vectors in different two moments under the 
inertial navigation frame (in0) respectively. 

g̃in0 (t1)

‖g̃in0 (t1)‖
=

gin0 + δgin0

g

(

1 +
2gin0 ⋅δgin0 + δgin0 ⋅δgin0

g2

)− 1
2

≈
gin0 (t1)

g
+

δgin0 (t1)

g
−

gin0 (t1)⋅δgin0 (t1)

g3 gin0 (t1)

(38)  

where δgin0 (t) means the error of vector (gin0 (t)), which can be given by 
the multiplying between the DCM and gravity vectorgin0 (t) =

Cin0
n (t)gn,δgin0 (t) = Cin0

n (t)δgn, g denotes the modulo ofgin0 (t),g =

⃦
⃦gin0 (t1)

⃦
⃦ = g

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (t1ωiecosL)2
√

. 

g̃in0 (t1) × g̃in0 (t2)

‖g̃in0 (t1) × g̃in0 (t2)‖
≈

rin0

r
+

δrin0

r
−

rin0 ⋅δrin0

r3 rin0 (39)  

where the vectors involved in above equation (39), rin0 and δrin0 are 
given by equation (40). r means the modulo ofrin0 . 
⎧
⎨

⎩

rin0 = gin0 (t1) × gin0 (t2)

δrin0 = δgin0 (t1) × gin0 (t2) + gin0 (t1) × δgin0 (t2)

r = ‖r‖ = g2ωie(t2 − t1)cosL
(40)  

g̃in0 (t1) × g̃in0 (t2) × g̃in0 (t1)

‖g̃in0 (t1) × g̃in0 (t2) × g̃in0 (t1)‖
=

sin0

s
+

δsin0

s
−

sin0 ⋅δsin0

s3 sin0 (41)  

where the vectors involved in equation (41) are given by (42). 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin0 = gin0 (t1) × gin0 (t2) × gin0 (t1)

δsib0 = δgin0 (t1) × gin0 (t2) × gin0 (t1) + gin0 (t1) × δgin0 (t2) × gin0 (t1)

+gin0 (t1) × gin0 (t2) × δgin0 (t1)

s = ‖s‖ = g3ωiecosL(t2 − t1)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 + t2
1ω2

iecos2L
)√

(42) 

Substitute the equations (38)–(42) into the equation (37), the vector 
matrix (δMin0 ) can be given by equation (43).  
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where ωN
ie and ωU

ie are the northward and upward projections of rotation 
angular rate of Earth under navigation frame (n) respectively.ωN

ie =

ωiecosL,ωU
ie = ωiesinL. 

It can be indicated from equation (36) that, the calculation of 
misalignment angle (ϕin0

1 ) consists of the right side of the equation. For 
the convenience to calculate matrix (M), transpose the first term of the 
right side of equation (36), which is given by equation (45). 

MT = Cin0
ib0

M− T
ib0

δMT
in0

= M− T
in0

δMT
in0

(45) 

Substitute the equation (43) and (44) into (45) ignoring the second- 
order values, the matrix (M) can be simplified as: 

MT =

⎡

⎣
0 ηtanL − η

− ηtanL 0 ξ
η − ξ 0

⎤

⎦ (46)    

(2) N = M− T
in0

δMT
ib0

Cib0
in0 

calculation. 

In the last section, the misalignment angular error caused by DOV 
has been analyzed, while the error influenced by IMU measurement 
errors is introduced in this section. 

Known from the second term of the right side in equation (36), the 
matrix (N) can be calculated by matrixes (M− T

in0
) given by equation (44) 

and (δMT
ib0

) determined by formula (47). 

M̃
T
ib0

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[
g̃ib0 (t1)

]T

⃦
⃦g̃ib0 (t1)

⃦
⃦

[
g̃ib0 (t1) × g̃ib0 (t2)

]T

⃦
⃦g̃ib0 (t1) × g̃ib0 (t2)

⃦
⃦

[
g̃ib0 (t1) × g̃ib0 (t2) × g̃ib0 (t1)

]T

⃦
⃦g̃ib0 (t1) × g̃ib0 (t2) × g̃ib0 (t1)

⃦
⃦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(47)  

where the gravity vector projection under inertial body frame (ib0) can 
be calculated by equation (21). 

Considering the constant zero bias errors of accelerometers and 
ignoring the second-order amounts, the equation (21) can be rewritten 
as: 

g̃ib0 (t) = gib0 (t) + δgib0 (t) = − Ĉ
ib0

b (t)f̃
b
(t)

= −
[
I − ϕib0

2 (t) ×
]
Cib0

b (t)
(
− gb +∇b)

≈ gib0 (t) − ∇ib0 (t) − ϕib0
2 (t) × gib0 (t)

= Cib0
in0

Cin0
n (t)

[
gn − ∇n − ϕn

2(t) × gn ]

(48) 

Known from the equation (48), the gravity vector error δgib0 (t) can be 
given by: 

δgib0 (t) = Cib0
in0

Cin0
n (t)

[
− ∇n − ϕn

2(t) × gn ]

= Cin0
n (t)

[
− ∇n − ϕn

2(t) × gn ]Cin0
ib0

(49) 

Similar with the equations (38)–(42), the vectors in inertial body 
frame can be given as: 

g̃ib0 (t1)

‖g̃ib0 (t1)‖
=

gib0 (t1)

g
+

δgib0 (t1)

g
−

gib0 (t1)⋅δgib0 (t1)

g3 gib0 (t1) (50)  

g̃ib0 (t1) × g̃ib0 (t2)

‖g̃ib0 (t1) × g̃ib0 (t2)‖
=

pib0

p
+

δpib0

p
−

pib0 ⋅δpib0

p3 pib0 (51)  

g̃ib0 (t1) × g̃ib0 (t2) × g̃ib0 (t1)

‖g̃ib0 (t1) × g̃ib0 (t2) × g̃ib0 (t1)‖
=

qib0

q
+

δqib0

q
−

qib0 ⋅δqib0

q3 qib0 (52) 

where the vectors involved in the above equations are given by: 
⎧
⎨

⎩

pib0 = gib0 (t1) × gib0 (t2)

δpib0 = δgib0 (t1) × gib0 (t2) + gib0 (t1) × δgib0 (t2)

p = ‖p‖ = g2ωie(t2 − t1)cosL
(53)  

⎧
⎪⎪⎨

⎪⎪⎩

qib0 = gib0 (t1) × gib0 (t2) × gib0 (t1)

δqib0 = δgib0 (t1) × gib0 (t2) × gib0 (t1) + gib0 (t1) × δgib0 (t2) × gib0 (t1)

+gib0 (t1) × gib0 (t2) × δgib0 (t1)

q = ‖q‖ = g3ωie(t2 − t1)cosL

(54) 

According to the relationship of coordinate transformation, the 
vector (gib0 (t)) can be given by: 

gib0 (t) = Cib0
in0

Cin0
n (t)gn (55) 

Substitute the equations (48)–(55) into the equation (47) and ignore 
the second-order amount, the matrix (δMT

ib0
) is given as equation (56) 

and the matrix (N) can be rewritten as equation (57).  

δMin0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
δgin0

g
−
(gin0 ⋅δgin0 )gin0

g3

)T

(
δrin0

r
−
(rin0 ⋅δrin0 )rin0

r3

)T

(
δsin0

s
−
(sin0 ⋅δsin0 )sin0

s3

)T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
η − t1ωU

ieξ
)3

+ ξ(t1ωie)
3cos2LsinL

[
1 +

(
t1ωN

ie

)2
]3

2

ηt1ωU
ie + ξ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
(
t1ωN

ie

)2
√

−
(
ηt1ωN

ie

)3
+ ξ(t1ωie)

2cosLsinL
[
1 +

(
t1ωN

ie

)2
]3

2

ηtanL 0 ξ

−
(
ξtanL + ηt1ωN

ie

)3
+ ξtanL

[
1 +

(
t1ωN

ie

)2
]

[
1 +

(
t1ωN

ie

)2
]3

2

− ξt1ωN
ie + ηtanL

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
(
t1ωN

ie

)2
√

(
− η + ξt1ωU

ie

)3
− ξt1ωU

ie

[
1 +

(
t1ωN

ie

)2
]

[
1 +

(
t1ωN

ie

)2
]3

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(43)  

M− T
in0

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[gin0 (t1)]
T

‖gin0 (t1)‖

[gin0 (t1) × gin0 (t2)]
T

‖gin0 (t1) × gin0 (t2)‖

[gin0 (t1) × gin0 (t2) × gin0 (t1)]
T

‖gin0 (t1) × gin0 (t2) × gin0 (t1)‖

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
gin0

g

)T

(
rin0

r

)T

(
sin0

s

)T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
t1ωiecosL

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (t1ωiecosL)2
√ 0 −

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (t1ωiecosL)2
√

0 1 0

−
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (t1ωiecosL)2
√ 0

t1ωiecosL
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (t1ωiecosL)2
√

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(44)   
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Subsequently, the equation (44) is substituted into the matrix (N) 
reserving the first-order values with ignoring the error term about εt as 
well as high-order amounts. Simplified the equation (57) and the matrix 
(N) can be ultimately given by: 

N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
g
∇EtanL −

1
ωN

ie
εE

1
g
∇E

1
g
∇EtanL −

1
ωN

ie
εE 0 −

1
g
∇N

1
g
∇E −

1
g
∇N 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(58) 

And then, substitute the equation (46) and (58) into the formula 
(36), the misalignment angle caused by DOV and IMU errors (ϕin0

1 ) can 
be obtained as equation (59). 

ϕin0
1 =

[

−
∇N

g
− ξ ∇E

g + η
(

∇E
g + η

)

tanL − 1
ωN

ie
εE

]T

(59)  

ϕn = ϕn
1 +ϕn

2 = Cn
in0

ϕin0
1 +ϕn

2 ≈

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
∇N

g
− ξ

∇E

g
+ η

(
∇E

g
+ η

)

tanL −
1

ωN
ie

εE

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(60) 

Ultimately, the equations (31) and (59) are substituted into the 
equation (20), the misalignment angle, caused by the coupling of DOV 
and IMU errors, of initial alignment is introduced as equation (60). 

It is indicated from equation (60) that the DOV components are 
coupled with the errors of horizontal inertial sensors reflected in the 
misalignment angles. The values of DOV directly restrain the alignment 
accuracy. In the respect of eastward and northward components of 
misalignment angle, the DOV components can be precisely estimated by 
horizontal misalignment angle, if the zero bias of horizontal acceler
ometers can be effectively suppressed. Based on the previous analysis, a 
novel DOV calculation method, estimated by misalignment angles based 
on single-axis rotating modulation is proposed and specifically 

introduced in the next chapter. 

5. DOV Estimation Method and Kalman Filter 

5.1. The principle of single-axis rotating modulation error suppression 

Relative to the single-position alignment, the single-axis rotation 
modulation method continuously rotates the IMU relative to the carrier 
around the azimuth axis at a constant angular rate, which not only 
makes the system completely observe but also the constant error of 
horizontal IMU can be modulated into a periodic signal which integrated 
to zero in a fixed rotation period, to suppress the constant error of the 
horizontal inertial sensors to the initial alignment. 

The constant drift bias errors and zero bias errors of gyroscopes and 
accelerometers are supposed to express as (εx), (εy), (εz) and (∇x), (∇y), 
(∇z) respectively. For the initial moment, the IMU frame (s) is consistent 
with the body frame (b) and the IMU rotates around the azimuth axis at a 
constant angular rate (ω). Consequently, the transformation relation 
between the IMU frame and body frame can be expressed as equation 
(61) and the errors of IMU under body frame after rotation can be 
determined by equations (62) and (63) respectively. 

Cb
s =

⎡

⎣
cosωt − sinωt 0
sinωt cosωt 0

0 0 1

⎤

⎦ (61)  

⎡

⎢
⎢
⎣

εb
x

εb
y

εb
z

⎤

⎥
⎥
⎦ =

⎡

⎣
εxcosωt − εysinωt
εxsinωt + εycosωt

εy

⎤

⎦ (62)  

⎡

⎢
⎢
⎣

∇b
x

∇b
y

∇b
z

⎤

⎥
⎥
⎦ =

⎡

⎣
∇xcosωt − ∇ysinωt
∇xsinωt +∇ycosωt

∇y

⎤

⎦ (63) 

Known from equations (62) and (63), the constant errors of the 
horizontal inertial sensors become the periodic signals after being 
modulated by single-axis rotation, and the integral of the signals is zero 

δMT
ib0

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
δgib0

g
−
(gib0 ⋅δgib0 )gib0

g3

)T

(
δpib0

p
−
(pib0 ⋅δpib0 )pib0

p3

)T

(
δqib0

q
−
(qib0 ⋅δqib0 )qib0

q3

)T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[(
I + t1ωn

ie ×
)
(εnt1 × gn − ∇n)

]T

⎧
⎨

⎩

[(
I + t1ωn

ie ×
)
(εnt1 × gn − ∇n)

]
×
[(

I + t2ωn
ie×)gn]+

[(
I + t1ωn

ie×)gn]×
[(

I + t2ωn
ie ×

)
(εnt2 × gn − ∇n)

]

⎫
⎬

⎭

T

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[(
I + t1ωn

ie ×
)
(εnt1 × gn − ∇n)

]
×
[(

I + t2ωn
ie×)gn]×

[(
I + t1ωn

ie×)gn]+
[(

I + t1ωn
ie×)gn]×

[(
I + t2ωn

ie ×
)
(εnt2 × gn − ∇n)

]
×
[(

I + t1ωn
ie×)gn]+

[(
I + t1ωn

ie×)gn]×
[(

I + t2ωn
ie×)gn]×

[(
I + t1ωn

ie ×
)
(εnt1 × gn − ∇n)

]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Cin0
ib0

(56)  

N = M− T
in0

δMT
ib0

Cib0
in0

= M− T
in0

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[(
I + t1ωn

ie ×
)
(εnt1 × gn − ∇n)

]T

⎧
⎨

⎩

[(
I + t1ωn

ie ×
)
(εnt1 × gn − ∇n)

]
×
[(

I + t2ωn
ie×)gn]+

[(
I + t1ωn

ie×)gn]×
[(

I + t2ωn
ie ×

)
(εnt2 × gn − ∇n)

]

⎫
⎬

⎭

T

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[(
I + t1ωn

ie ×
)
(εnt1 × gn − ∇n)

]
×
[(

I + t2ωn
ie×)gn]×

[(
I + t1ωn

ie×)gn]+
[(

I + t1ωn
ie×)gn]×

[(
I + t2ωn

ie ×
)
(εnt2 × gn − ∇n)

]
×
[(

I + t1ωn
ie×)gn]+

[(
I + t1ωn

ie×)gn]×
[(

I + t2ωn
ie×)gn]×

[(
I + t1ωn

ie ×
)
(εnt1 × gn − ∇n)

]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

a+ (57)  

S. Hao et al.                                                                                                                                                                                                                                     



Measurement 204 (2022) 112047

8

within one complete rotation period. It is indicated from equation (60) 
that the initial alignment error is mainly related to constant errors of 
horizontal inertial sensors. Hence, the rotation modulation can effec
tively suppress the horizontal inertial sensors errors and the constant 
errors of sensors during a rotation period is introduced as the following 
paper. 

There is a constant drift in the laser gyroscope and zero bias in the 
accelerometers, which affect the horizontal and azimuth alignment ac
curacy in the initial alignment of SINS. Integrate the equations (62) and 
(63) during a rotation period, which can be given by: 

∇E =

∫ t

0

(
∇xcosωt − ∇ysinωt

)
dτ

t
=

∫ t

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∇2
x +∇2

y

√

cos(ωt + α)dτ

t

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∇2

x +∇2
y

√

ωt
[sin(ωt + α) − sinα ]

(64)  

α = arccos
∇x

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∇2

x +∇2
y

√

Same as equation (64), the northward zero bias and eastward drift 
can be calculated by: 

∇N =

∫ t

0

(
∇xsinωt +∇ycosωt

)
dτ

t
=

∫ t

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∇2
x +∇2

y

√

sin(ωt + α)dτ

t

= −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∇2

x +∇2
y

√

ωt
[cos(ωt + α) − cosα ]

(65)  

εE =

∫ t

0

(
εxcosωt − εysinωt

)
dτ

t
=

∫ t

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ε2
x + ε2

y

√

cos(ωt + β)dτ

t

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ε2

x + ε2
y

√

ωt
[sin(ωt + β) − sinβ ]

(66)  

β = arccos
εx

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ε2

x + ε2
y

√

The horizontal and azimuth alignment errors caused by constant 
drift and zero bias of gyroscopes and accelerometers are given by 
equations (67)-(69) respectively. 

ϕE = −
∇N

g
= −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∇2

x +∇2
y

√

gωt
[cos(ωt + α) − cosα ] (67)  

ϕN =
∇E

g
= −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∇2

x +∇2
y

√

gωt
[sin(ωt + α) − sinα ] (68) 

It can be seen from equations (67)–(69) that the horizontal and az
imuth misalignment angle has been modulated into the periodic signals 

after the rotating modulation. Besides, the horizontal misalignment 
angle is related to the zero bias of horizontal accelerometers (∇x,∇y), 
rotation angular rate of the turntable (ω) and the alignment time (t). At 
the same time, the integration of the horizontal misalignment angle 
caused by IMU errors during a rotation period is zero, which means the 
misalignment angles after rotating modulation directly reflect the DOV 
information on static-base. Consequently, based on the previous anal
ysis, the specific process of the DOV estimation method is introduced in 
Section C. 

ϕU =
∇E

g
tanL −

εE

ωiecosL

= −
tanL

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∇2

x +∇2
y

√

gωt
[sin(ωt + α) − sinα ] −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ε2

x + ε2
y

√

ωiecosLωt
[sin(ωt + β)

− sinβ ]
(69)  

5.2. Kalman filter model based on DOV modeling. 

Kalman filter, a classical optimal estimation theory, widely appli
cated for state estimation in linear systems. For the initial alignment of 
SINS, the adaptive condition of Kalman filter is under the small 
misalignment angle. Consequently, the process of initial alignment is 
generally divided into two procedures, coarse alignment of inertial 
frame and fine alignment based on Kalman filter. 

According to the error equations of SINS, the attitude and velocity 
error equations of single-axis rotating laser SINS on static-base can be 
expressed as: 

ϕ̇
n
= − ωn

ie × ϕn − Cn
bCb

pεp (70)  

δv̇n = f n × ϕn +Cn
bCb

p∇
p + δgn (71)  

where matrix (ϕn) means the misalignment angles, εp and ∇p denote the 
constant drift and zero bias of gyroscopes and accelerometers under the 
IMU frame (p) respectively. 

From section A chapter IV analysis, it can be known that the DOV 
components initially have an impact on the velocity error and then affect 
the attitude error. Consequently, it is necessary to construct the gravity 
disturbance model to satisfy with Kalman filter equations under the 
dynamic measured situation and not required modeled under static base 
or waggling base. 

Under the dynamic measured situation, the gravity disturbance 
model of the whole trajectory can be modeled as the first-order Markov 
model, where the autocorrelation and the power spectral densities 
functions of the first-order Markov model are introduced by: 
⎧
⎪⎨

⎪⎩

Cx(τ) = σ2e− ζ|τ|

Φx(ω) =
2σ2ζ

ω2 + ζ2

(72) 

Fig. 3. Process of DOV estimation.  
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where σ means the mean square variance of gravity disturbance and ζ is 
the reciprocal of time. 

The state and discretization equations of gravity disturbance can be 
written as: 

δġ(t) = − ζδg(t) +
̅̅̅̅̅̅̅̅̅̅
2ζσ2

√
w(t) (73)  

δgk = e− ζΔtδgk− 1 + σ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − e− 2ζΔt

√
wk− 1 (74) 

The system state equation and observation equation in Kalman filter 
are given by: 
{

Ẋ = FX + GW
Z = HX + V

(75)  

where X = [ϕn δVn εp ∇p δgn ]
T is the system state vector, 

including misalignment, velocity error, gyroscope drift, accelerometer 
zero bias, and horizontal gravity disturbance. The matrixes F and G are 
state transform matrix and distribution matrix of system noise respec
tively, which are shown as: 

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
− ωn

ie ×
)

3×3 03×3 − Cn
bCb

p3×3
03×3 03×3

(f n × )3×3 03×3 03×3 Cn
bCb

p3×3
I3×3

03×15

03×15

03×12 F13×3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

F1

=

⎡

⎣
− ζ1 0 0

0 − ζ2 0
0 0 − ζ3

⎤

⎦, G =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− Cn
b 03×3 03×3

03×3 Cn
b 03×3

06×3 06×3 06×3

03×3 03×3 I3×3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, W =

⎡

⎢
⎢
⎢
⎣

wb
g

wb
a

wn
dg

⎤

⎥
⎥
⎥
⎦

W is the system noise, which can be considered as zero-mean random 
white noise. Z denotes the observation state, as for the zero-speed theory 
of static-base initial alignment, the output of SINS (Vn) is velocity error 
(δVn) and acceleration error can be calculated by the differential of 
velocity, ignoring upward channel, which is given by:Z = [Vn

E Vn
N ]

T. 
H denotes the observation matrix defined as: 

H = [ 02×3 I2×2 02×10 ]

V is the measurement noise that assumed to be white noise. 

5.3. DOV estimation process on static base 

From the analysis in the previous sections, it can be indicated that the 
DOV components can be estimated from the horizontal misalignment 
angles by rotating modulation. For the static-base of SINS, the inertial 
frame coarse alignment combined with the fine alignment based on 
Kalman filter with single-axis rotating method is proposed to estimate 
the DOV components from misalignment angle of initial alignment. The 
specific process of this method is shown as Fig. 3. 

It is obvious from Fig. 3. that the coarse alignment provides attitude 

transformation matrix (Cn′

b ) for fine alignment based on Kalman filter. 
Subsequently, the difference between the attitude estimation matrix 
(Ĉ

n
b) and reference attitude (Cn

b) is used to obtain the estimated value of 
the misalignment angle. Eventually, the DOV components (ξ, η) are 
estimated by horizontal misalignment angle (ϕE, ϕN) respectively. In 
addition, the dotted arrow line in Fig. 3 indicates the DOV compensation 
process for initial alignment, which will improve the performance of 

Table 1 
Simulation Parameters setup.  

Conditions Parameters Accuracy 

IMU Gyro. Constant drift εb 0.01◦/h 
Gyro. Random walk εb 0.001◦/h1/2 

Acce. Constant zero bias ∇b 100 μg 
Acce. Random walk ∇b 10 μg/Hz1/2 

Alignment time Total time 6 min 
Coarse alignment time 3 min 
Fine alignment time 5 min 

Rotating condition Rotating angle 3600◦

Rotating time 5 min 
DOV East-west η 5′ ′

South-north ξ 18′ ′

Fig. 4. Attitude angles without rotation.  

Fig. 5. Attitude angles with rotation.  

Fig. 6. Misalignment angles in coarse alignment without rotation.  
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alignment accuracy. 

6. Simulations 

To verify the validity of theoretical analysis for error derivation of 
initial alignment in chapter IV and the performance of the DOV esti
mation method based on single-axis rotating modulation, the experi
ments on initial alignment with and without rotating modulation were 

conducted and specifically introduced in this chapter. 

6.1. Simulation conditions setup 

The simulation conditions, listed in Table 1, were set as follows: The 
latitude and longitude were N-34◦1′48′ ′ and E-108◦45′52′ ′ respectively. 
The carrier speed is set as zero and the initial attitude angles, the pitch 
(θ), roll (γ) and heading angle (ψ) were 10◦, 0◦, 30◦ respectively. From 
the perspective of IMU, the constant drift and random drift biases of 
gyroscopes were set as 0.01◦/h and 0.001◦/h1/2, while the constant zero 
bias and random walk coefficient of accelerometers were 100 μg and 10 
μg/Hz1/2. The time of total alignment was set as 6 min, the coarse 
alignment base on the inertial frame was 3 min, while the fine alignment 
based on Kalman filter was 5 min, where the first two minutes data 
reutilized the last 2 min data of coarse alignment. When under the 
rotating modulation conditions, the rotating time was 5 min and the 
total rotating angle was 3600◦. The IMU data were generated after the 
addition of DOV components which were set as 5′ ′ and 18′ ′ respectively. 

6.2. Analysis of DOV estimation results 

The results of attitude angles with and without rotation are shown in 
Fig. 4 and Fig. 5 respectively. As can be seen from the figures, the hor
izontal attitude angles (θ, γ) rapidly converge to the theoretical values 
and the heading angle was gradually convergence to fluctuate around 
the theoretical value without the rotation. While in the rotating modu
lation condition, the horizontal attitudes are modulated as the sinusoi
dal signal and the heading angle became the sawtooth signal. 

The misalignment angles in coarse alignment with and without 

Fig. 7. Misalignment angles in coarse alignment with rotation.  

Fig. 8. Misalignment angles in fine alignment without rotation.  

Fig. 9. Misalignment angles in fine alignment with rotation.  

Table 2 
Experiments Results.   

DOV estimation value DOV true value 

η̂/(′ ′) ξ̂/(′ ′) η/(′ ′) ξ/(′ ′) 

1  4.73  18.03 5.00 18.00 
2  5.14  18.07 
3  5.53  16.62 
4  5.85  17.91 
5  5.01  17.99 
6  5.03  18.26 
7  4.85  17.31 
8  4.74  17.67 
9  5.18  17.55 
10  5.05  17.91 
Mean value  5.111  17.732 
RMSE  0.349  0.479  

Fig. 10. Estimation of accelerometers without rotation.  

S. Hao et al.                                                                                                                                                                                                                                     



Measurement 204 (2022) 112047

11

rotation are plotted in Fig. 6 and Fig. 7, while the fine alignment results 
under two conditions are shown in Fig. 8 and Fig. 9 respectively. It can 
be seen from the figures that the misalignment angles are significantly 
reduced with rotating modulation both in coarse alignment and fine 
alignment, particularly in upward misalignment angles. This is mainly 
because the horizontal errors of inertial sensors are effectively 

suppressed by rotating modulation, which is consistent with the theo
retical analysis in chapter V. 

It is indicated from the horizontal misalignment angles in Figs. 6-9 
that the DOV components are coupled with accelerometer errors, under 
the condition without rotation, while in the coarse alignment with 
rotating modulation, the horizontal misalignment angles are converged 
nearby the true values. However, the estimation results in coarse 
alignment with rotation still cannot effectively suppress the acceler
ometers errors. While in the fine alignment with rotating modulation, 
the horizontal misalignment angles are extremely converged to the DOV 
true values, which can be effectively estimated as DOV components 
based on formula (60), shown in Fig. 9. 

The results of DOV values estimated by horizontal misalignment 
angles selected from experiments are listed in Table 2. It can be known 
from the table that the estimation of DOV components from horizontal 
misalignment angles are extremely closed to the theoretical true values 
of DOV. The root means square (RMS) results of the DOV components (η, 
ξ) are 0.349′ ′ and 0.479′ ′ respectively. Consequently, the estimation 
results of DOV validated the correctness of previous theoretical analysis 
in chapter IV/V and are consistent with the equation (60) and (67)–(68). 
The performance of the proposed method can satisfy the requirements 
for the accuracy of DOV. 

6.3. Estimation of inertial sensor errors 

In this section, the errors estimation analysis of the inertial sensors 
based on the Kalman filter with and without rotation is performed. The 
accelerometer constant zero biases are plotted in Fig. 10 and Fig. 11 in 
two conditions, while the gyroscope constant drift biases are plotted in 
Fig. 12 and Fig. 13. It is obvious from Fig. 10 and Fig. 11 that the con
stant zero biases hardly be effectively estimated without rotation. In this 
respect, this is mainly because the observabilities of accelerometer zero 
biases are too low and cannot be effectively estimated by Kalman filter. 
On the contrary, while in the rotation condition, the accelerometer zero 
biases can be more accurately estimated from state value in the Kalman 
filter, shown as Fig. 11. 

From the perspective of the gyroscope, the drift biases estimation of 
three-axis basically reach convergence after the 150 s. However, as for 
the limitation of observabilities, the convergence results are inconsistent 
with true values. When in the rotation condition, the drift biases of x/y- 
axis accelerometers effectively converge to the true values, while the z- 
axis accelerometer cannot converge because of the rotation around the 
z-axis. 

Consequently, after the rotating modulation, the observability of 
inertial sensors errors has been improved and the fine alignment based 
on Kalman filter can effectively estimate the inertial sensors constant 
errors from the state values. 

6.4. Influence of Dov and gravity anomaly on alignment attitude angle 
error 

To further analyze the influence of DOV and gravity anomaly on 
alignment attitude angle error, the six different cases of dual-position 
alignment experiments were conducted. The five cases of DOV and 
gravity anomaly are listed in Table 3, and the IMU parameters are shown 

Fig. 11. Estimation of accelerometers with rotation.  

Fig. 12. Estimation of gyroscopes without rotation.  

Fig. 13. Estimation of gyroscopes with rotation.  
Table 3 
Parameters setup.   

DOV Gravity Anomaly 

η/(′ ′) ξ/(′ ′) Δg/(mGal) 

Case1 5 − 10 0 
Case2 10 − 10 0 
Case3 5 − 20 0 
Case4 5 − 10 50 
Case 5 0 0 0  
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in Table 4. The total time during the alignment is 5 min. During the first 
140 s, the IMU is static in the first position and then rotated 180◦ to the 
second position in 10 s, subsequently, the IMU is similarly static in the 
second position for 140 s and rotated 180◦ back to the first position 

during within 10 s. In order to clearly reflect the convergence, the 30 s 
was added in the last position. Consequently, the total time was set as 
330 s under this condition. 

The simulation results of pitch, roll, and heading angle errors are 
shown in Figs. 14 and 15 respectively. It can be obviously observed that 
the orange dotted line (Case 5) is converged around the zero with 
rotational modulation, which is consistent with the parameters of case 5. 

Table 4 
Parameters setup.  

Conditions Parameters Accuracy 

IMU Sample rate 100 Hz 
Gyro. Constant drift εb 0.005◦/h 
Gyro. Random walk εb 0.0005◦/h1/2 

Acce. Constant zero bias ∇b 50 μg 
Acce. Random walk ∇b 5 μg/Hz1/2 

Inertial alignment Algorithm samples 4 
Attitude updating time 0.04 s  

Fig. 14. Pitch and roll angle errors of six cases.  

Fig. 15. Heading angle errors of six cases.  

Table 5 
GDV and DOV parameters.   

δgE /(mGal) ΔgN /(mGal) 

η/(’’) ξ/(’’) 

GDV  46.58  − 121.74 
DOV  − 9.81  25.64  

Fig. 16. Pitch and roll angle errors.  

Fig. 17. Heading angle errors.  

Fig. 18. Alignment experiment equipment system.  
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The misalignment angles (ϕE, ϕN, ϕU) are conventionally converted into 
the attitude angle errors (δθ, δγ, δψ) for analysis and the transformation 
equation can be known from [25]. Consequently, the theoretical values 
of the attitude angle errors can be obtained by substituting equation (60) 
into the transformation equation, and the simulation results in the fig
ures are all converged to the corresponding theoretical values of five 
cases. 

Comparing the case 1 and case 2, it can be known that the pitch angle 
errors are almost consistent, while the roll angle error of case 2 is greater 
about 5′’ than case 1, which is consistent with the incremental param
eters between the case 1 and 2 (η) of the Table 3. In addition, the 
compared results of the Case 1 and 3 demonstrate the incremental of 
south-to-north component (ξ). Moreover, the results of case 1 and case 4 
indicate that the gravity anomaly has no effect on alignment attitude 
angle error. Consequently, it can be concluded that the south-to-north 
component (ξ) and east-to-west component (η) directly affect the 
values of pitch angle error and roll angle error, while the heading angle 
error is commonly affected by (ξ) and (η). 

7. Experiments 

7.1. Simulation of DOV compensation on alignment 

In order to directly reflect the influence of DOV and the promotion of 
accuracy after compensation on the attitude angle error of initial 
alignment based on rotational modulation, this section is mainly intro
duced the effects of DOV compensation on dual-position alignment and 
continuous-rotation alignment. The IMU parameters are same set as the 
previous section, the latitude and longitude are N 34◦1′48′ ′ E 
108◦45′52′ ′ respectively. The GDV as well as the DOV, calculated by 
EIGEN-6c4 gravity field model, are listed in Table 5. 

The horizontal attitude angle errors and heading angle error are 
shown in Figs. 16 and 17 respectively. It can be indicated that the atti
tude angle errors of single position alignment before DOV compensation 
are more obvious because of the couple influence of accelerometers 
errors and DOV, while the errors of dual-position alignment and 
continuous-rotation alignment are all almost reduced to around the zero 
with DOV compensation. 

7.2. Experiments of DOV compensation on alignment 

The rotational modulation experiments of dual-positions and 
continuous-rotation were conducted and the accuracy increasement of 
alignment after DOV compensation is mainly analyzed in this section. 

The theoretical true value of heading angle was 9577.379′, which can be 
precisely measured by pendulous gyroscope, shown as Fig. 18. 

In the experiment, coarse alignments were set for 120 s and fine 
alignment using Kalman filtering for 240 s. The IMU sampling interval is 
0.01 s; After the self-calibration experiment of SINS, the laser gyroscope 
constant drifts are 0.0050, 0.0048, and 0.0045◦/h respectively, and the 

Fig. 19. Size effect estimation of x-axis.  

Fig. 20. Size effect estimation of y-axis.  

Fig. 21. The attitude angles before and after compensation.  

Table 6 
Experiments Results.   

Before compensation 
/(ʹ) 

After compensation 
/(ʹ) 

True value /(ʹ) 

1  9576.574  9576.684 9577.379 
2  9576.467  9576.573 
3  9576.738  9576.826 
4  9576.589  9576.681 
5  9576.932  9577.106 
6  9576.745  9576.836 
7  9577.174  9577.277 
8  9576.914  9577.124 
9  9576.425  9576.538 
10  9577.029  9577.132 
Mean 

value  
9576.759  9576.878 

RMSE  0.696  0.591  
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corresponding random walk coefficients were 0.00046, 0.00044, and 
0.00047◦/h1/2 respectively, while the accelerometer constant zero bia
ses were 47, 51, 37 μg, respectively. 

The size effect estimations of horizontal accelerometers are shown in 
Figs. 19 and 20. Moreover, the constant drifts, install angle errors and 
scale factor error of IMU as well as the size effect of accelerometers 
caused by rotation have been eliminated in data process. Fig. 21 in
dicates the variation of attitude angles with and without DOV 
compensation of coarse alignment based on dual-positions alignment, 
and the ten groups of final alignment results of continues rotation are 
listed in Table 6. 

To evaluate the promotion in heading angle performance after 
compensation, the RMSE of experiments was calculated for the heading 
angle before and after compensation. It is indicated that the RMSE of the 
heading angle before and after DOV compensation are 0.696ʹ and 0.591′

respectively. The error is reduced about 6′’. 

8. Conclusion 

From the perspective of the inertial navigation field, the plumb plane 
and normal plane are normally mixed in navigation process ignoring the 
influence of DOV. This will directly cause the horizontal direction errors 
of gravity vector, thus affecting the alignment and navigation accu
racies. With the development of inertial technology, this influence has 
become one of the main errors in orientation and position. In this 
respect, the theoretical limit error equation of initial alignment, 
considering the coupling of IMU errors and DOV, has been specifically 
derived based on inertial frame alignment theory. It is pointed out that 
the DOV components straightforward caused the values of horizontal 
misalignment angles. Based on the results of theoretical analysis, the 
DOV estimated method, calculated by horizontal misalignment angles 
with rotating modulation, has been proposed. Finally, the initial align
ment experiments with and without rotation are conducted to compar
atively analyze the performance of the proposed method. Moreover, the 
comparative simulations of influences of DOV and gravity anomaly on 
alignment attitude angle error as well as the DOV compensation simu
lations and experiments were implemented. It can be concluded that the 
DOV components directly cause the horizontal attitude angle errors, 
while the gravity anomaly has no effect. 

The simulations results of DOV estimation indicate that the RMSEs of 
the DOV components of the proposed method are 0.349′ ′ and 0.479′ ′

respectively, which validate the correctness of the theoretical analysis 
and feasibility of the proposed method. And the experiment results of 
DOV compensation show that the RMSE of heading angle error is 
reduced by about 6′’. 
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