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Abstract: In the field of ultra high accuracy inertial measurement unit (IMU), pendulous integrating
gyroscopic accelerometer (PIGA) has become a research hot spot due to its high-end performance.
However, PIGA is sensitive to angular velocity, and the calibration process of PIGA-based IMU will
be very complicated, which makes online self-calibration difficult to implement. To solve the above
problems, we proposed an online self-calibration method utilizing angular velocity observation. The
main contributions of this study are twofold: (1) An error analysis of PIGA is conducted in this paper,
and the error model has also been simplified to suit the self-calibration model. (2) An improved
online self-calibration method utilizing angular observation based on a simplified PIGA error model
is proposed in this study. Experimental results show that the self-calibration method proposed in
this study can improve the PIGA online calibration accuracy effectively (with the accuracy within
0.02 m/s/pulse), which can improve the dynamic accuracy of the PIGA.

Keywords: inertial measurement unit (IMU) calibration; pendulous integrating gyroscopic accelerometer
(PIGA); angular observation

1. Introduction

In the past few decades, pendulous integrating gyroscopic accelerometer (PIGA) has
become a research hot spot due to its high-end performance in the field of ultra high
accuracy inertial measurement unit (IMU) [1]. The accuracy of gyroscopes has made great
progress in the past few decades [2]. However, the accuracy of the accelerometer has a very
high correlation between the horizontal attitude and the positioning accuracy of the inertial
navigation system (INS), especially in free inertial model [3]. PIGA has many advantages,
such as large overload, high accuracy, and high measure range [4]. After a complicated
calibration process, PIGA-based IMU can reach high navigation performance [5], which
lays the foundation for its utilization in ultra high accuracy INS.

However, PIGA is sensitive to angular velocity, and the calibration process of PIGA-
based IMU will be very complicated, which makes online self-calibration difficult to
implement. Many researchers have studied the self-calibration method for rotation INS
(RINS) and hybrid INS (HINS). In terms of biases estimation of IMU, Fong et al. proposed
methods for in-field calibration of IMU without external equipment [6]. In Ref. [7], a
gyro-bias calibration method has been proposed for analytic coarse alignment. Han et al.
proposed a method for bias calibration of ring laser gyroscopes (RLGs) in single-axis
RINS [8]. Furthermore, Li et al. in [9] analyzed the observability of the IMU bias self-
calibration method of single-axis RINS. When the rotational degrees of freedom exceed 1,
the calibration of IMU’s scale factors can be realized [10]. PIGA contains the angular velocity
coupling calibration parameters, with only one rotation axis (only for bias calibration) that
cannot meet the self-calibration demand of PIGA.
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Many researchers have studied IMU all parameters (biases, scale factors, nonlinear
factors, lever arms, etc.) and self-calibration methods for RINS. Ren et al. proposed a
multi-position self-calibration method for dual-axis RINS [10]. Yu et al. added gyro scale
factor asymmetry factors into the calibration filtering process to improve the self-calibration
accuracy of gyroscopes [11]. In Ref. [12], researchers considered the accelerometers-size-
effect in self-calibration method for tri-axis RINS. Wen et al. proposed a 40-dimensional
error model for the self-calibration process by considering the gyro-accelerometer asyn-
chronous time in dual-axis RINS [13]. The observation method has been analyzed in [14]
for vehicle-based INS. The above calibration methods only consider the error parameters
under the condition of linear error, there are some studies that have analyzed the calibration
methods in nonlinear conditions. In Ref. [15], a KF-based AdaGrad algorithm is proposed
to solve the nonlinear problem. Furthermore, Cai et al. extended the dimension of the
Kalman filter (KF) model to 51 for ultra high accuracy dual-axis RINS and adopted the RTS
smoothing method to improve the calculation rate [16]. In Ref. [17], Pan et al. considered
the accelerometer nonlinear scale factor for calibration methods. In Ref. [18], the gyro
bias caused by geomagnetic fields in dual-axis RINS has been analyzed and calibrated.
However, few researchers have studied the calibration methods for accelerometers with
angular velocity coupling parameters. With limited rotation equipment, self-calibration
methods for ultra high accuracy PIGA-based IMU are necessary.

The angular observation method has been researched in [19], which is effective in
IMU calibration when the encoders of the turntable are accurate [20]. However, the two
methods do not apply to the calibration of the PIGA-based IMU, because the angular
rate accuracy and differential accuracy obtained from the encoders are poor. To solve the
above problems, an improved online self-calibration method utilizing angular velocity
observation for ultra high accuracy PIGA-based IMU is proposed in this study. The main
contributions of this study are twofold: (1) An error analysis of PIGA is conducted in
this paper, and the error model has also been simplified to suit the self-calibration model.
(2) An improved online self-calibration method utilizing angular observation based on a
simplified PIGA error model is proposed in this study. With only the angular velocities
provided by the gyroscopes embedded in the PIGA-based IMU, the angular velocity
coupling factors can be estimated utilizing the proposed 43-dimensional self-calibration
filtering model. Experimental tests are carried out to verify the feasibility and applicability
of the investigated method.

The remainder of this work is presented as follows: Section 2 gives the error analysis
of the PIGA, and a simplified error model of PIGA for self-calibration is proposed. Section 3
derives the proposed online self-calibration method utilizing angular observation based on
a simplified PIGA error model, and we derive a 43-dimensional filtering model to solve the
aforementioned problems. Experimental setup, results, and discussions are provided in
Section 4 to verify the effectiveness of the proposed self-calibration method. Finally, the
conclusions are given in Section 5.

2. Modeling and Analysis of PIGA
2.1. Kinetics Analysis of PIGA

The internal coordinate system of PIGA is shown as Figure 1:
In Figure 1, α̇ denotes the angular velocity of the outer frame assembly about the oy1

axis, β̇ is the angular velocity of the inner frame assembly about the ox axis relative to the
outer frame. φ̇ denotes the angular velocity of the rotor assembly about its axis of rotation
relative to the inner frame.

The establishment process of the PIGA internal coordinate system can be expressed as
follows: First, it is assumed that the shell coordinate system ox0y0z0 of the gyro accelerome-
ter, the outer frame coordinate system ox1y1z1, and the inner frame coordinate system oxyz
are completely coincident, and the center of mass of the eccentric mass is located on the
z-axis. Secondly, it is assumed that the outer ring component of PIGA is rotated around the
axis by an angle, the inner ring component is rotated by α angle around the axis, and the
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non-orthogonal state of the PIGA internal coordinate system is obtained as shown in the
above figure.

Figure 1. Internal coordinate system of PIGA.

Under the condition that the rotor is fully dynamically balanced, each axis of the
coordinate system oxRyRzR is the main axis of inertia of the rotor, so its inertia product is
zero, and the calculation formula of the angular momentum of the rotor is as follows: HxR

HyR

HzR

 =

 A
(
ωx − ∆φyωz

)
Bωy

C
(
∆φyωx + ωz + φ̇

)
 (1)

A = B is the moment of inertia about the two coordinate axes perpendicular to the
rotor axis. C is the moment of inertia of the rotor shaft. Since the ox, oy, and oz axes are
not the main inertial axes of the inner frame assembly, their inertia products are not equal
to zero. The formula for calculating the angular momentum of the inner frame assembly
(excluding the rotor) relative to the oxyz axis is: Hx

Hy
Hz

 =

 Jxx −Jxy −Jxz
−Jxy Jyy −Jyz
−Jxz −Jyz Jzz

 ωx
ωy
ωz

 =

 Jxxωx − Jxyωy − Jxzωz
−Jxyωx + Jyyωy − Jyzωz
−Jxzωx − Jyzωy + Jzzωz

 (2)

where Jxx, Jyy, Jzz are the moment of inertia of the frame component to the coordinate
system oxyz. Jxy, Jxz and Jyz are the inertia product of the inner frame component on the
planes to which the x-axis and the y-axis, the x-axis and the z-axis, and the y-axis and the
z-axis belong.

Mx is the total external torque acting on the inner ring shaft, including elastic torque,
friction torque, electromagnetic interference torque, etc., which are not related to specific
force, and inertial torque, unequal elastic torque, damping torque, etc., which are related to
specific force. Mx can be described as:

Mx = Mx(a) + Mxr (3)

where Mxr is the sum of the disturbance moments of the inner frame.
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Assuming that the coordinates of the center of mass of the PIGA inner ring component
are (0, 0, l), the moment generated by the acceleration can be obtained, and Mxr can be
analyzed and calculated below.

Mx(a) = F× l =

 0 −maz may
maz 0 −max
−may max 0

 0
0
l

 =

 mlay
−mlax

0

 (4)

where m is the mass of the inner frame assembly.
The expressions of the input-specific force of PIGA in the inner and outer ring coordi-

nate systems can be expressed as: ax
ay
az

 =

 1 0 0
0 cos β sin β
0 − sin β cos β

 1 ∆ϕz 0
−∆ϕz 1 0

0 0 1

 ax1

ay1

az1


=

 ax1 + ∆ϕzay1

ay1 cos β + az1 sin β− ∆ϕzax1 cos β
−ay1 sin β + az1 cos β + ∆ϕzax1 sin β

 (5)

According to the above formula, the inertia moment caused by the input-specific force
is:

Mx(a) = ml
[
ay0 cos β + (ax0 sin α + az0 cos α) sin β

−∆φz(ax0 cos α− az0 sin α) cos β]
(6)

2.2. Simplified PIGA Error Model

After the above analysis of various error sources, to accurately calibrate the nonlinear
error term of the PIGA, it is necessary to accurately model the gyroscopes.

It can be seen from the working principle of PIGA that the motion equation of the
inner frame shaft of PIGA is deduced according to the Euler equation dH

dt + ω× H = M.
The precession angle α is much larger than the misalignment angle β, and β is a small
angle. Now, let Ix = Jxx + A, Iy = Jyy + B, Iz = JzzR , HzR = H, and simplify processing,
Then cos β = cos 2β = 1, sin β = β, sin 2β = 2β, deriving the output equation of PIGA
can obtain:

α̇ = ml
H ay1 +

ml
H β(ax0 sin α + az0 cos α) − ∆φz

H (ax0 cos α − az0 sin α)

+ 1
H (Mx(B) + MxR) −

(
ωy0 + ωz1 β − ∆φzωx1

)
− Ix + ∆φz Jxy

H ω̇x1

+
Jxy − Ix∆φz − (A∆φy + Jxz)β

H
(
α̈ + ω̇y0

)
+

A∆φy + Jxz + Jxy β
H ω̇z1

+
Jxy + βJxz + ∆φz(Iz − Iy)

H ωx1 ωz1 +
Jxz − Jxy β − ∆φz(Iz − Iy)

H ωx1 ωy0

+
Jxy∆φz − (Iz − Iy) + 4βJyz

H ωz1 ωy0 +
Jxz − Jxy β − ∆φz(Iz − Iy)

H ωx1 α̇

+
Jxy∆φz − (Iz − Iy) + 4βJyz

H ωz1 α̇ +
2Jxz∆φz + 2β(Iz − Iy) + 2Jyz

H ωy0 α̇

+
Jxy∆φz + β(Iz − Iy) + Jyz

H α̇2 − Jxz∆φz
H ω2

x1
+

Jxz∆φz + β(Iz − Iy) + Jyz
H ω2

y0

− (Iz − Iy)β + Jyz
H ω2

z1

(7)

Since the output equation of PIGA in the ideal state can be expressed as α̇ = ml
H ay1 ,

that is, in the above formula, α̇ = ml
H ay1 is an effective signal, and the rest can be regarded

as error terms, and its physical meaning is as follows: Mm
H has nothing to do with the

input specific force, mainly the error term caused by elastic torque, friction torque and
electromagnetic interference torque caused by electromagnetic components. ωy0 + ωz1 β is
the error term due to the involved motion of the gyro shell. ∆φz and ∆φy are the error terms
caused by the PIGA outer ring shaft and the inner ring shaft, as well as the out system
between the inner ring shaft and the rotor, which are affected by machining and assembly
errors. α̇2 is the nonlinear error of the gyroscopic accelerometer, which is caused by the
centrifugal force of the inner ring assembly as it rotates around the outer ring axis.
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Based on Equation (7), the general error model equation of PIGA can be obtained as
follows:

α̇ = K0 + Kxax + Kyay + Kzaz + Kxxa2
x + Kyya2

y + Kzza2
z + Kxyaxay

+Kxzaxaz + Kyzayaz + ∆̇xω̇x + ∆̇yω̇y + ∆̇zω̇z + ∆xωx + ∆yωy + ∆zωz
+∆xxω2

x + ∆yyω2
y + ∆zzω2

z + ∆xyωxωy + ∆xzωxωz + ∆yzωyωz

+δxayωx + δyayωy + δzayωz

(8)

where K is the static error coefficient, ∆ denotes the dynamic error coefficient, δ is the mixed
error coefficient.

The above PIGA error model expression includes the static error model of PIGA, which
is the term related to the linear acceleration of PIGA; the dynamic error model, which is the
term related to the input angular velocity and angular acceleration; the mixed error model,
which is related to the linear acceleration and PIGA.

Since the input shaft and output shaft of PIGA are coincident, the corresponding terms
of the cross-axis x-axis and z-axis have little effect on the output. The simplified model of
Equation (8) can be written as:

α̇ = K0 + Kyay + Kyya2
y + Kωωy (9)

It can be seen from the above analysis that K0 is introduced by unequal elastic torque,
friction torque, damping torque, and other torques that have nothing to do with the input
specific force; Ky is caused by the change of the meter parameters, and the change includes
the detection quality and the motor rotor quality. Changes, pendulum length changes,
changes in the inertia radius of the motor rotor moment of inertia, and changes in the motor
speed, among which the change in mass is small and generally ignored; the quadratic
term coefficient Kyy is proposed due to the existence of α̇2, and they are determined by
the inertia of the inner frame component. Product, unequal inertia and rotational inertia,
etc., are caused by the centrifugal force of the inner frame shaft due to the rotation of the
gyro accelerometer around the outer frame shaft under the condition of the verticality
error; Kω is caused by the rotation of the output shaft. The error caused by the angular
velocity coupling term. Since the coefficient Kyy of the gyro accelerometer error model is
affected by the interference torque existing on the inner frame axis, when machining the
gyro accelerometer, the interference torque existing on the inner frame axis can be utilized
to reduce its impact on the scale factors.

3. Online Self-Calibration Method Utilizing Angular Velocity Observation
3.1. Error Model of PIGAs in Filtering

As the core component of the strategic weapon IMU system, the gyro accelerometer’s
calibration level directly affects and determines the actual combat effectiveness of the
weapon [18]. In the actual system use, when the rocket engine is turned off during the
transition from power flight to ballistic flight, the gyro accelerometer inertial group is
required to control the cut-off speed and initial pitch, and heading of the missile. Setup,
simulation analysis, etc., consist of only two PIGAs and a quartz accelerometer.

The IMU accelerometer inertial group in this section consists of two gyro accelerome-
ters and a quartz accelerometer (hereinafter referred to as the accelerometer component).
The calibration parameters include the accelerometer bias, scale factor, installation error
angle, quadratic term coefficient, and angle Rate coupling term coefficients.

Considering that the accelerometers in the IMU are not strictly orthogonally installed,
in the inertial navigation solution, the output of each inertial device must be projection
is in the same orthogonal coordinate system, which is named the IMU coordinate system
(m-frame) in this paper.

In this work, to convert the measurement information of the accelerometer from the
oblique coordinate system to the IMU coordinate system, an orthogonal coordinate system
(o-frame) is defined by the sensitive axis of the accelerometer. The xo axis is consistent
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with the sensitive axis xa of the accelerometer, and the yo axis is in the plane formed by the
sensitive axes xa and ya of the accelerometer and differs from the ya axis by a small angle
βyz, the zo axis is the accelerometer sensitive axis za rotated by a small angle βzx around
the xa axis, and then rotated by a small angle βzy around the ya axis, as shown in Figure 2.

Figure 2. Relationship between accelerometer non-orthogonal coordinate frame and sensitive orthog-
onal coordinate frame.

The installation error matrix of the accelerometer can be expressed as:

Mo
a ≈

 1 0 0
−βyz 1 0
βzy −βzx 1

 (10)

where βij represents the deflection angle of the i-axis of the accelerometer sensitive axis
around the j-axis of the o-frame.

Since the installation error between the gyro component and the accelerometer com-
ponent is a small angle, the coordinate transformation matrix from the system to the IMU
coordinate system can be written as:

Cm
o ≈

 1 −ηz ηy
ηz 1 −ηx
−ηy ηx 1

 (11)

where the installation error angle ηi between the gyro component and the accelerometer
component is the Euler angle concerning the i-axis.

The installation error matrix of the accelerometer can be defined by 6 small angles, as
shown in Figure 3, and in the IMU coordinate frame:

Mm
a = Mo

aCm
o ≈

 1 −ηz ηy
ηz − βyz 1 −ηx
−ηy + βzy ηx − βzx 1

 =

 1 αxz −αxy
−αyz 1 αyx
αzy −αzx 1

 (12)
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Figure 3. Accelerometer non-orthogonal coordinate frame.

The unit vectors measured by the accelerometer components in the IMU are oxa, oya,
and oza, respectively, and the order of magnitude of the cubic term of the instrument is very
small, so the actual accelerometer inertial group input and output model is simplified as:

Na = Ka
1

(
Mo

a f a + Ka
2( f a)2 + ba + Kωω + va

)
(13)

Neglecting the accelerometer noise term, we can obtain:

f m ≈ KANa − KA2( f m)2 − bm − Kωω (14)

where f m is the specific force measured by the accelerometer. KA = Mm
a (K

a
1)
−1. Expand

Equation (14) as:

 f m
x

f m
y

f m
z

 =

 Ka
x αxz −αxy

−αyz Ka
y αyx

αzy −αzx Ka
z


 Na

x
Na

y
Na

z

−


Ka
2x(Na

x)
2

Ka
2y

(
Na

y

)2

Ka
2z(Na

z )
2

−
 bm

x
bm

y
bm

z

−
 Kx

ωωx

Ky
ωωy

Kz
ωωy

 (15)

3.2. 43-Dimensional Kalman Filtering Model for Self-Calibration

In the process of self-calibration, there is a lever arm at the observation point of the
velocity position and the rotation center of the IMU, which is called the outer lever arm
in this paper. If the rotation center of the turntable does not coincide with the IMU, the
observation of the velocity and position will have errors along with the rotation of the
indexing mechanism. Therefore, it is necessary to analyze the effect of the outer lever arm.

Assuming that the outer lever arms between the IMU and the turntable are δlb
x, δlb

y

and δlb
z , the velocity and position observations of the IMU can be written as:

vobv = vn
e + Cn

b (ω
b
eb × δlb)

pobv = p +


1

RM + h 0 0
0 1

(RN + h) cos L 0
0 0 1

Cn
b δlb (16)

where RM and RN are the earth radius parameter, h is the height.
It should be noted that in Equation (15), The non-orthogonal angles of the gyro and

accelerometer are usually only a few tens of arc minutes, so the formula can be written as:

 f m
x

f m
y

f m
z

 ≈
 Ka

x αxz −αxy

−αyz Ka
y αyx

αzy −αzx Ka
z


 Na

x
Na

y
Na

z

−


Ka
2x(Na

x)
2

Ka
2y

(
Na

y

)2

Ka
2z(Na

z )
2

−
 bm

x
bm

y
bm

z

−
 Kx

ω Ng
x

Ky
ω Ng

y
Kz

ω Ng
z

 (17)
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In this paper, a 43-dimensional Kalman filter is designed to estimate the error and
calibration parameters of the IMU. The state quantities in the error equation include
the scale error, zero bias, inner lever arm, outer lever arm, and gyro acceleration of the
gyroscope and accelerometer. The state quantity of the filtering method proposed in this
paper can be written as:

X =
[

ϕT δvnT
e δpT Xg

T Xa
T δlbT δrbT δta

]T
(18)

where δp =
[

δL δλ δh
]T , Xg is the gyroscope calibration error parameters. Xa repre-

sents the accelerometer calibration error parameters. δlbT is the outer lever arm vector, and
δrbT is the inner lever arm vector. The gyro error vector and accelerometer error vector are
shown in Equation (19).

Xg = [ δkg
11 δkg

21 δkg
31 δkg

22 δkg
32 δkg

33 εx εy εz ]T

Xa = [ δka
11 δka

21 δka
31 δka

12 δka
22 δka

32
δka

13 δka
23 δka

33 ∇x ∇y ∇z δKa
2x δKa

2y δKa
2z δKa

ω x δKa
ω x δKa

ω x ]T
(19)

The state function of KF can be described as:

Ẋ = FX + Gu (20)

According to the previous error analysis of the IMU, the state transition matrix F can
be obtained as:

F =



−
[
ωn

in×
]

F12 F13 F14 03×15 03×3 03×3 03×1[
(Cn

b f b)×
]

F22 F23 03×9 F25 03×3 F27 F28

03×3 F32 F33 03×9 03×15 03×3 03×3 03×1
09×3 09×3 09×3 09×9 09×15 09×3 09×3 09×1
015×3 015×3 015×3 015×9 015×15 015×3 015×3 015×1
03×3 03×3 03×3 03×9 03×15 03×3 03×3 03×1
03×3 03×3 03×3 03×9 03×15 03×3 03×3 03×1
01×3 01×3 01×3 01×9 01×15 01×3 01×3 01×1


(21)

The elements of the F are shown as follows: F12 =

 0 0 1
RN + h

0 0 tan L
RN + h

−1
RM + h 0 0

, F32 =


1

RM + h 0 0
0 0 1

(RM + h)
0 1 0

, F13 =


−ωie sin L 0 −vE

(RN + h)2

ωie cos L + vE
(RN + h)cos2 L 0 −vE tan L

(RN + h)2

0 0 vN

(RM + h)2

, F14 = −Cn
b

[
Ng

x I3×3

[
01×2

Ng
y I2×2

] [
02×1

Ng
z

]
I3×3

]
, F22 = −

[
(2ωn

ie + ωn
en)×

]
+ [vn

e×]F12, F23 = [vn
e×]F13 +

 −ωie sin L 0 0
ωie cos L 0 0

0 0 0


, F25 = Cn

b

[
Na

x I3×3 Na
y I3×3 Na

z I3×3 I3×3 (Na)2 Ng
]
,

and F33 =


0 0 −vN

(RM + h)2

vE sin L
(RN + h)cos2 L 0 −vE

(RN + h)2 cos L
0 0 0

. Here, Ng
i is the output of the three gyro-

scopes, and Na
i denotes the output of the three PIGAs. According to the analysis of the

inner lever arm and the analysis of the time asynchronous error of the gyro accelerometer,
the element matrices F27 and F26 in the state transition matrix can be obtained:
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F27 = Ma
b · [(ωb

ib×)
2 + (ω̇b

ib×)]
F28 = Cn

b ωb
ib × f b

SF
(22)

The outer lever arm effect is mainly reflected in the observation equation in the Kalman
filter. During the rotation of the indexing mechanism, the attitude error cannot be obtained
in real time. However, during the rotation of the indexing mechanism, after compensating
the outer lever arm, the observed speed and position are both 0.

Z = HX + V =

[
vn

e + Cn
b [(ω

b
ib − Cn

b
Tωn

ie)× δlb]− vobv
p + diag( 1

RM+h , 1
(RN+h) cos L , 1)Cn

b δlb − pobv

]
(23)

Therefore, the observation transition matrix H can be written as:

H =

[
H11 I3×3 H13 H14 03×15 Cn

b [ω
b
eb×] 03×7

H21 03×3 H23 03×9 03×15 H26 03×7

]
(24)

The elements of the H are shown as follows: H11 = [(Cn
b (ω

b
eb × lb))×] − Cn

b [l
b×]Cb

n[ω
n
ie×],

H13 = Cn
b [l

b×]Cb
n


−ωie sin L 0 0

ωie cos L 0 0

0 0 0

, H14 = −Cn
b [l

b×]
[

Ng
x I3×3

[
01×2

Ng
y I2×2

] [
02×1

Ng
z

]
I3×3

]
,

H21 = diag
[

1
RM + h , 1

(RN + h) cos L , 1
]
[(Cn

b lb)×], H23 =


1 0 −ln

x
(RM + h)2

ln
y sin L

(RN + h)cos2 L 1
−ln

y

(RN + h)2 cos L

0 0 1

,

H26 = diag
[

1
RM + h , 1

(RN + h) cos L , 1
]
.

Since both the state equation and the observation equation are linear, we can use KF
to estimate the error of the IMU.

Based on the previous analysis, the rotation path of the self-calibration utilizing
angular velocity observation can be designed in Table 1:

Table 1. Rotation path of self-calibration process.

Time
Rotation Axis (Inner (I)
(z-Axis of IMU)/Outer
(O) (x-Axis of IMU))

Rotation Angle
along I/O Axis

Attitude after
Rotation (X)

Attitude after
Rotation (Y)

Attitude after
Rotation (Z)

0 s - - East North Upward

180 s O +90◦ East Upward South

270 s O +180◦ East Downward North

360 s O +180◦ East Upward South

450 s I +90◦ Upward West South

540 s I +180◦ Downward Upward South

630 s I +180◦ Upward West South

720 s O +90◦ South West Downward

810 s O +180◦ North West Upward

900 s O +180◦ South West Downward

990 s O +90◦ Downward West North

1080 s O +90◦ North West Upward

1170 s O +90◦ Upward West South

1260 s I +90◦ West Downward South

1350 s I +90◦ Downward East South
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Table 1. Cont.

Time
Rotation Axis (Inner (I)
(z-Axis of IMU)/Outer
(O) (x-Axis of IMU))

Rotation Angle
along I/O Axis

Attitude after
Rotation (X)

Attitude after
Rotation (Y)

Attitude after
Rotation (Z)

1440 s I +90◦ East Upward South

1530 s O +90◦ East South Downward

1620 s O +90◦ East Downward North

1710 s O +90◦ East North Upward

The entire rotation path includes 18 rotation stages with a duration of 0.5 h; in the
rotation stages 1–18, each rotation stage has a duration of 90 s, including the rotation
movement and parking with an angular velocity of 20, where the purpose of rotation stages
1–10 is to excite and decouple all system-level self-calibration parameters; rotation stages
11–19 are mainly designed for rotation path design principle, whose purpose is to make
all self-calibration parameters are fully estimated, especially the gyro bias error term. In
addition, the initial alignment of the static base is performed for 120 s of coarse alignment
and 180 s of fine alignment before self-calibration.

The self-calibration process is designed as follows:
As shown in Figure 4, the designed IMU consists of fiber optic gyroscopes (FOGs) and

PIGAs, and the angular velocity observation is based on the FOG’s angular velocity output.
Utilizing the error models of FOG and PIGA, the state equation and measurement equation
of KF can be derived, substitute the two equations into KF’s time update and measurement
update, the calibration results of the PIGA-based IMU can be obtained.

Figure 4. Self-calibration process utilizing angular velocity observation.
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4. Experimental Results and Analysis

For the purpose of verifying the feasibility and effectiveness of the proposed online
self-calibration method utilizing angular velocity observation for ultra high accuracy PIGA-
based IMU. A self-calibration test is conducted to evaluate the accuracy of the calibration
parameters. The circuit design of the embedded calculation and collect module is shown in
Figure 5.

The flow chart of the inertial navigation signal is shown in Figure 5. The FOG transmits
information such as uncalibrated angular increment, mechanical frequency jitter, and
amplitude jitter to the Field Programmable Gate Array (FPGA) through the 3.3 V TTL level,
and the current signal of the accelerometer passes through the I/F. After the module is
converted into a frequency signal, it is transmitted to the FPGA. It should be noted that the
FOG has a delay of 4 ms due to the low-pass filtering process. Therefore, the clock phase of
the FPGA sampling signal to the DSP motion control module needs to be shifted to the left
by 4 ms phase relative to the sampling signal to the FOG. In this way, the encoder angle
information transmitted by the DSP motion control module to the FPGA through the serial
port is synchronized with the output information of the IMU in time, and no related errors
will be caused during the attitude demodulation process. After processing the relevant
information, the FPGA transmits it to the DSP navigation module through EMIF, and also
gives a 200 Hz square wave signal to the GPIO port of the DSP as the solution cycle (timed
interrupt). Under the condition of large airborne dynamics, the operation rate of 200 Hz
cannot meet the accuracy requirements. Therefore, in the process of the 4 k sampling of
the IMU, the signal will not be accumulated, but will be latched and sent to the FPGA
through EMIF.

Figure 5. The circuit design of the embedded calculation and collect module.

During the process of calibration, the output of PIGAs and FOGs are shown in Figure 6.
It can be seen from Figure 6 that the PIGA’s output is related to the rotation process,

which verifies the error model derived in Section II. The accuracy of FOG we utilize in this
designed IMU is 0.002◦/h (10 s, 1σ), with a 10 ppm (1σ) of scale factor repeatability.
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Figure 6. Raw data of PIGA-based IMU during self-calibration process.

The designed RINS is fixed in the marble, and the algorithm is implemented on
a digital signal processor (DSP) chip. We use the method in ref. [16] as a comparison,
and the self-calibration process lasts 30 min. In addition, we use a high-precision three-
axis turntable to calibrate the IMU parameters as a reference. This method requires a
high-precision turntable, and the IMU needs to be removed from the dual-axis RINS. For
example, the accuracy of the dual-axis turntable is not high (especially horizontal accuracy).
Traditional methods are described in [13]. The estimated curves of the IMU parameters are
shown in Figures 7–9:
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Figure 7. PIGA-based IMU biases estimation curves.

Figure 8. PIGA-based IMU scale factors estimation curves.

Figure 9. PIGA-based IMU installation angles estimation curves.

Particularly, we draw the angular velocity sensitivity curve of PIGA separately in
Figure 10 to perform a separate analysis of its convergence.
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Figure 10. PIGA’s angular velocity coupling factors estimation curves.

It can be seen from Figure 7 to Figure 9 that the errors added to the model do not
affect the convergence of the IMU bias, scale factors, and installation angles. In Figure 10,
The PIGA’s angular velocity coupling factors start to converge when the turntable rotates.
To better discuss the experimental effect of this method, the estimated parameters are
summarized in Table 2:

Table 2. Estimation results of different methods.

Estimated Parameters Proposed Method Traditional Method Reference Values

εx −0.0189◦/h −0.0092◦/h −0.0176◦/h

εy 0.0312◦/h 0.0381◦/h 0.0309◦/h

εz 0.0852◦/h 0.0786◦/h 0.0843◦/h

∇x 423.23 µg 413.77 µg 423.71 µg

∇y −808.63 µg −810.65 µg −808.47 µg

∇z 687.76 µg 692.65 µg 687.36 µg

δkg
xx 100,063.42◦/h/pulse 100,069.66◦/h/pulse 100,063.76◦/h/pulse

δkg
yy 100,067.43◦/h/pulse 100,068.78◦/h/pulse 100,067.90◦/h/pulse

δkg
zz 100,053.78◦/h/pulse 100,054.74◦/h/pulse 100,053.12◦/h/pulse

δka
xx 98,012.98 m/s2/pulse 98,013.12 m/s2/pulse 98,012.34 m/s2/pulse

δka
yy 98,015.76 m/s2/pulse 98,016.31 m/s2/pulse 98,015.48 m/s2/pulse

δka
zz 98,063.94 m/s2/pulse 98,062.52 m/s2/pulse 98,063.32 m/s2/pulse

δkg
yx 3.487′ 4.521′ 3.654′

δkg
zx −2.653′ −3.987′ −2.76 ′

δkg
zy 11.676′ 10.455′ 11.149′

δka
xy 9.421′ 9.912′ 9.122′

δka
xz 7.645′ 6.938′ 7.476′

δka
yx 1.567′ 1.765′ 1.543′

δka
yz −5.141′ −5.267′ −5.134′

δka
zx 3.112′ 3.983′ 3.145′

δka
zy 6.653′ 5.769′ 6.790′

δKw −0.978 m/s/pulse −1.176 m/s/pulse −0.981 m/s/pulse

δKw −3.313 m/s/pulse −3.026 m/s/pulse −3.301 m/s/pulse

δKw 3.121 m/s/pulse 3.389 m/s/pulse 3.112 m/s/pulse
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As shown in Table 2, the estimation accuracy of the proposed method is better than
the traditional method, especially the calibration parameters of gyros. In addition, we find
that the estimation results of PIGA’s angular velocity coupling factors are very close to
the results utilizing high accuracy offline calibration method. The errors of gyro biases
estimated by the traditional method are 0.012◦/h to 0.023◦/h, using the proposed method,
the errors are only within 0.003◦/h. The errors of the FOGs’ scale factors estimated by the
traditional method are more than 15 ppm.

The self-calibration experiment results show that the propsoed method can not only
estimate the PIGA’s angular velocity coupling factors, but also improve the gyroscope
calibration parameters when utilzing the PIGA-based IMU.

5. Conclusions

Here, we propose an online self-calibration method utilizing angular velocity obser-
vation. Experimental results indicate that the proposed method accurately estimates the
PIGA’s angular velocity coupling factors and improves the calibration accuracy by up to
0.02 m/s/pulse simultaneously, compared with the traditional self-calibration method
(with an accuracy of 0.2 m/s/pulse) for PIGA-based IMU. After compensating for the
PIGA’s angular velocity coupling factors, the navigation dynamic accuracy can be greatly
improved. The self-calibration method also simplifies the calibration process and cali-
bration implementation conditions, which make it possible to perform online-calibration
without disassembling it and returning it to the factory for calibration.

There are still some error mechanisms that are understudied. In the future, research
on decoupling the calibration of angular velocity and acceleration coupling coefficients will
be carried out to improve the accuracy of PIGA continuously.
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