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Pre-Impact Fall detection system using Deep
learning and wearable sensors
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Abstract—Fall detection and prevention are crucial in elderly
healthcare and humanoid robotic research as they help mitigate
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the damaging after-effects of falls. In this work, we have presented ot T
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the-art. To achieve this, we have developed an automatic feature
extraction methodology that can extract temporal features from
all types of human fall data collected using wearable sensors.
A deep neural classifier based on the ensemble of convolutional
neural network (CNN) and Long short-term memory network (LSTM)
is trained on the extracted temporal features. The classifier has
performed exceptionally well in detecting the Fall Initiation phase with a Sensitivity of 99.24% and an F1-score of 98.79%
for different types of falls. A Sensitivity of 99.24% signifies that the model has sufficiently reduced the occurrence of false
negatives, which is far more critical for an FDS. A concept of a transitional window is introduced to improve the reaction
time of the FDS. We utilized two standard fall datasets, viz. SisFall and KFall for the experimentation. Dataset fusion is
employed to increase the generalizability of the system. This work can be utilized to design and develop fall detection
devices for the Internet of Healthcare applications (loHT) and for imparting fall detection capabilities to humanoid robots
and gait rehabilitation devices such as exoskeleton robots and smart prosthetic legs.
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[. INTRODUCTION [4]. Hence, a robust fall detection and prevention system is

ALLS are the most common cause of injuries to the el-

derly and incur a significant cost burden to the healthcare
system. Every year, hundreds of thousands of people, primarily
the elderly, encounter some fall, which results in critical in-
juries causing severe disabilities and even fatalities. According
to World Health Organization’s (WHO) report [1], the elderly
population are more prone to falls, with approximately 28-35%
of people aged 65 and above falling each year, increasing to
32-42% for people aged 70 and above. Moreover, the elderly
females are at higher risk of hip-related fractures during falls
due to factors such as low bone mineral density (BMD) [2],
and low Body mass index (BMI) [3]. Further, for persons
with disabilities, diseases such as Parkinson’s disease (PD) [3],
post-operative conditions and injuries are again at relatively
high fall risk due to impaired gait and weakened reflexes
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imperative to counter this global health challenge.

Falling is a result of a sudden imbalance in gait caused
by a slip, trip, external push [5], or various gait abnormali-
ties, resulting in a subject losing balance and falling on the
ground. Falling is a postural instability problem in human gait
research. Fall recovery is a behavioural-based learning mech-
anism involving neuromuscular interaction, dynamic stability,
and proprioceptive sense. Human beings always have some
bounded fall recovery capability [6] which varies with factors
such as age, gender, terrain, fatigue, injury and posture. This
capability decreases with age due to neuromuscular decline.
Postural stability analysis can be utilized for an early diagnosis
of elderly health to protect them from damages due to falls.

Broadly, the Fall data can be collected and analyzed in three
ways: Vision-based methods, ambient sensor-based methods,
and wearable sensor-based methods [7]. Vision-based meth-
ods use imaging devices such as video cameras placed at
strategic locations to capture image sequences at discreet time
intervals to detect the occurrence of falls. Ambient sensor-
based methods use infrared cameras, floor sensors, microphone
arrays, depth sensors and imaging devices deployed in the
environment to capture gait data. The major limitation of these
approaches is that they are relatively costly and restricted to
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laboratory environments, thus making them impractical for
continuous gait monitoring in real-world situations. The third
and the most popular method [8] is the wearable sensor-based
approach. They collect the Kinematics and kinetics of human
locomotion using wearable devices such as inertial mea-
surement units (IMUs), magnetometers, electroencephalogram
(EEG), and Electromyography (EMG). Wearable sensor-based
methods are non-invasive and provide a practical solution for
real-world usage, as they are independent of the environment,
can be easily deployed on the subject without hindering their
normal day-to-day activities, and are cost-effective [9]. IMUs
placed near the subject’s centre of mass (COM) produces
a more accurate measurement of inertial signals [10], [11];
however, wrist-mounted devices are more comfortable for
a subject to wear but are less accurate [12]. With rapid
miniaturization of sensor modules and with the advent of the
tinyML framework [13], both a comfortable and robust FDS
solution can be provided. Moreover, a smartphone-based FDS
will be an effective solution due to the widespread usage of
smartphones.

An inertial fall data is an acceleration and angular velocity
signal captured through the accelerometer and gyroscope of an
IMU. An inertial fall data consists of four main phases, namely
the activity of daily living (ADL), Fall initiation, Impact and
Aftermath, as shown in the figure 1. ADL phase is charac-
terized by periodic patterns in inertial signals corresponding
to the activity the subject is performing. This periodicity is
coherent with the periodicity in human gait [14]. A fall is a
transition from the ADL to the falling phase, called the Fall
initiation phase and is characterized by a sudden peak in the
acceleration and angular velocity signals. This sudden peak is
due to the gravity forces as the subject is under the free fall.
The falling results in an impact on the ground, constituting
the Impact phase and is characterized by a sudden drop in
the acceleration and angular velocity signals. An almost flat
line characterizes the aftermath phase in inertial signal and is
representative of the subject is lying on the ground.

The two most common types of FDS are alarm-based
FDS and preemptive FDS. Alarm-based FDS aims to gather
assistance when a person has already encountered an impact
on the ground [15]. Whereas, Preemptive FDS tries to predict
the fall before impact, to prevent the fall from happening or to
dampen the effects by employing some dampening measures
such as the deployment of airbags [16]. Preemptive FDSs
are also called as Pre-Impact FDSs. The reaction time metric
characterizes a good Pre-Impact FDS. A short reaction time
means that a fall is detected very early, and a sufficient
lead time is available to initiate some preventive mechanism
to dampen its impact. Further, in gait rehabilitation using
exoskeleton robots and walk generation of humanoid robots,
a shorter reaction time can help initiate some gait and posture
correcting routines to negate the fall or its effect if the fall is
inevitable.

This work presents a novel feature extraction methodology
for Deep learning-based Pre-Impact FDS by addressing two
critical challenges associated with fall data analysis. The
primary challenge is how to interpret the fall inertial data
to detect the Pre-Impact falls, and the second challenge is
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Fig. 1: Different Phases in a Fall activity.

how to minimize the reaction time of FDS to prevent the fall
from happening? For proper interpretation of inertial fall data,
temporal labels are required to identify the fall’s beginning and
end, which are missing in most publicly available fall datasets.
To address these, firstly, we have developed a novel feature
extraction methodology using statistical measures, which ac-
curately segments the fall inertial data into its constituent
temporal phases, namely the ADL, Fall Initiation, Impact
and Aftermath. Our approach is fully automatic and does not
require prior knowledge of the system (model-less). Secondly,
we segmented the fall initiation phase into a transitional
window (T,,) to explicitly train the deep neural classifier
in the ADL — to — Fall_initiation transition features to
minimize the reaction time of FDS. To build the FDS, we
have trained a CNN-LSTM ensemble model on the extracted
temporal features. We utilized Two benchmark fall datasets,
viz. SisFall [11] and KFall [17] for the experimentation. We
have fused the features extracted from two datasets to improve
the generalizability of the FDS since the SisFall dataset has
both adult and elderly data and is representative of the Colom-
bian population. In contrast, the KFall dataset is representative
of the Korean population and has only adult population data.
Our proposed Pre-Impact FDS, named FallNet, is an 8-class
classifier capable of distinguishing between different ADLSs
and various stages of falls. It has shown tremendous capability
in detecting the Fall initiation phase with a Sensitivity of
99.24% and an F'lscore of 98.79% for all types of falls. With
T, the estimated reaction time comes down to 0.5 seconds
(s), giving a lead time of 0.5s, sufficient to inflate an airbag
which takes about 0.133s [16] to inflate, thus outperforming
the state-of-the-art. Moreover, we have validated our temporal
feature segmentation results by comparing them with the
temporal labels available in the KFall dataset and found our
results consistent, thus providing a robust automatic alternative
to the manual labelling approach demonstrated in the KFall
dataset. With this work, we have provided a generalized
framework to work with fall inertial datasets as it facilitates the
development of autonomous adaptive systems which can adjust
to each individual’s gait pattern automatically, thus aiding in
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providing a personalized healthcare device.

The rest of the paper is organized as follows: The second
section is the related work section which provides a brief
literature review. The third section is the methodology sec-
tion, where we have described the data preprocessing steps,
proposed feature extraction methodology and the network
architecture of the deep neural classifier. The third section
is the results and discussion section, which provides the
critical analysis of results and a comparative analysis with
the state-of-the-art methodologies. The last section is the
conclusion section, which also discusses the limitations and
future implications of our work.

[1. RELATED WORK

Fall detection is an active research area, and many different
approaches have been suggested in the literature, which can be
broadly classified into threshold-based and Machine learning
(ML) based methods. ML based FDS: Quadros et al. [18] have
demonstrated a wrist-mounted FDS using both threshold-based
and ML-based approaches. They collected the fall and non-
fall data from 22 volunteers using a wrist-mounted IMU. The
ML system achieved a Sensitivity of 100% and specificity
of 97.9%, whereas the threshold-based system achieved a
Sensitivity of 95.8% and specificity of 86.5%. Santoyo-
Ramén et al. [19] have presented a study on the effect of
a user’s physical characteristics on the FDS. They identified
that a certain divergence in height and weight of the subjects
in both training and test set could hamper the Sensitivity
of the classifier by 20% and Specificity by 5%. Yu et
al. [20] have proposed a CNN-LSTM-based Pre-Impact FDS
using wearable inertial sensors. They claimed to have obtained
mean sensitivities of 93.15, 93.78, and 96% on non-fall, Pre-
Impact fall and fall activities, respectively. Musci et al. [21]
have proposed an Online FDS using recurrent neural network
(RNN) architecture and a wearable microcontroller device
equipped with inertial sensors. They have also described a
tool for providing temporal annotations to raw inertial signals.
Their FDS is a 3-class classifier viz. fall, alert and ADL
(named BKG) with a fall detection accuracy of 96.06% and
a Sensitivity of 93.41%. They have exclusively performed
training and testing on a single dataset, which contributes
to the significant limitation of the study. Also, they have
used a manual approach for temporal annotations against our
automatic segmentation approach. Mrozek et al. [15] have
presented the architecture of both cloud-based and edge-
based FDS for large-scale monitoring of older adults. They
used smartphone-based inertial sensors for data collection
and Boosted decision trees as an ML classifier. They have
claimed to have obtained 99.8% classification accuracy using
this approach. Threshold based FDS: De Sousa et al. [22]
presented a threshold-based Pre-Impact FDS using a MEMS
accelerometer. They have utilized the concept of a balance
boundary circle which is based on the subject’s height and
classified the activities outside of the balance boundary circle
as a fall. They have obtained a lead time of 0.259s, with a
specificity of 97.7% and Sensitivity of 94.04%. Wu et al.
[23] have presented a threshold-based Pre-Impact FDS using

X i © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt s://www.ieee.org/i)ublications/rights/indeg(.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on November 08,2022 at 06:42:57 UTC from

wearable sensors. They employed fisher discriminant analysis
to develop a 3-class classifier to distinguish between non-
fall, backward, and forward fall scenarios. They achieved a
Sensitivity of 95.5% with a lead time of 0.376s for backward
fall and 0.404s for forward fall. FDS for Biped Robots:
Wu et al. [24] have presented a method for Biped robot
fall prediction using a Support vector machine (SVM) as a
classifier and BHR-6 robotic platform for experimentation.
They have employed the concept of survival kernel by training
a binary classifier to identify the possibility of fall and no fall.
The major limitation of this work is that they have tested on
a single robotic platform with very little training data, thus
limiting the generalizability of the system.

[1l. METHODOLOGY
A. Data Collection and Preprocessing

We have utilized two standard fall datasets, viz. SisFall
[11] and KFall [17] for this study. A brief description of
these datasets is given in table I. SisFall dataset comprises
ADL data of both adult and elderly populations, whereas
fall activity data was collected only for the adult population
except for the elderly subject SE06. In contrast, the KFall
dataset comprises only adult population data for ADL and fall
activity. We utilized ADL and fall data for only a selected
set of activities, as mentioned in the table I, as these are
the most common types of falls encountered in daily life.
A feature extraction methodology is employed (explained in
the following subsection) to extract the relevant features from
the two datasets. Temporal features from both datasets were
utilized for training the model to improve the generalizability
of the classifier. Initially, two labelled datasets were prepared
by extracting the temporal features individually from both
SisFall and KFall datasets and assigning the class labels
according to algorithm 1. The two datasets were then fused
after performing the z-score standardization individually on
the two datasets. Z-score standardization was again employed
before the final data was fed into the network to normalize
the features extracted from the two datasets. Cubic spline
interpolation is performed on the KFall dataset to make its
sampling rate equivalent to the SisFall dataset.

B. Feature Extraction methodology

Most publicly available fall datasets do not have the required
temporal labels to mark the beginning and end of a fall
activity, which is paramount for fall data analysis. Some
datasets, such as KFall [17] have provided temporal labels,
but they were estimated manually by synchronizing video
recordings with the inertial fall data. Although it produces
accurate labels, it is a very tedious and cumbersome process
and inefficient for IoHT application, which requires long-
term human gait monitoring. Musci et al. [21] have utilized
a graphical annotation tool for assigning the temporal labels
to fall activity data for the SisFall dataset, but again it was a
manual approach and required a team of experts to perform the
task. To overcome these limitations, we have developed a novel
feature extraction methodology (described in algorithm 1) for
automatically extracting temporal features from fall data using
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TABLE I: Dataset Description.

Metric SisFall Dataset [11]

KFall Dataset [17]

. Adult: 23 Adult: 32
Subject Count Elderly: 15 Elderly: Nil
Adult: 1930 Adult. 249 £ 3.7

Age range of Subjects (Years)

Elderly: 60-75

Elderly: Nil

Data Collection Device Inertial Measurement unit

Inertial Measurement unit

Device Placement Waist Lower Back
Sensors Utilized 3D accelerometer (2 units), 3D gyroscope (1 unit) A single 3D accelerometer and gyroscope
Sampling Frequency 200 Hz 100 Hz

DO1: Walking slowly

DO02: Walking quickly
DO03: Jogging slowly

DO04: Jogging quickly
DOs:

ADL Activities utilized
(Activity ID, Activity Name)

D18: Stumble while walking

Walking upstairs and downstairs slowly
DO06: Walking upstairs and downstairs quickly

T10: Stumble while walking

FO1

Fall Activities utilized
(Activity ID, Activity Name)

: Fall forward while walking caused by a slip
FO02: Fall backward while walking caused by a slip
FO03: Lateral fall while walking caused by a slip
FO04: Fall forward while walking caused by a trip
FO5: Fall forward while jogging caused by a trip
FO06: Vertical fall while walking caused by fainting

T28: Vertical(forward) fall while walking caused by fainting
T30: Forward fall while walking caused by a trip

T31: Forward fall while jogging caused by a trip

T32: Forward fall while walking caused by a slip

T33: Lateral fall while walking caused by a slip

T34: Backward fall while walking caused by a slip

statistical measures. Our technique is fully automatic and does
not require any prior knowledge of the system.

The algorithm begins by calculating standard deviation
(std) on non-overlapping windows of size W's along the Y-
axis of the acceleration data. Y-axis points to the gravity
direction [11] and hence is most sensitive to g-forces. W's
is kept at 1/4'" of the sampling frequency (sf), which is
0.5s in our case. We experimented with different window
sizes and found that a window of 0.25(sf) is the aptest for
accurate feature extraction. The instant of maximum std value
implies the point of significant disturbance in the g-forces, thus
signalling the fall initiation. This is based on the observation
that during a fall activity, there is only one sudden spike
and a subsequent drop in acceleration (refer to figure 2). The
window with maximum std is now representative of the Fall
initiation phase and is called the segmentation window (S,,).
The starting frame of S, will become the segmentation point
(S,).

Our objective is to develop an FDS capable of dis-
tinguishing between different ADLs and various stages of
falls. Hence, we prepared the input data by keeping them
in one of the following eight classes: (”Walking”, “Jog-
ging”, "Walking _stairs_updown”, ’Stumble_while_walking”,
”Fall_Recovery”, “Fall_Initiation”, “Impact”, ~Aftermath”).
As explained in algorithm 1, we took 4 % Ws worth
of data along S, starting from (S,), and labelled it as
”Fall_initiation” phase. Further, 4 «+ Ws worth of data is
extracted from the point after the S, ends to the beginning of
the Aftermath phase and is labelled as "Impact” phase. These
two phases combinedly represent the complete fall activity.
The S, will not only consist of fall activity features but is
also a representative of the transition from the ADL to the
fall initiation phase (ADL — to — Fall_init). This transition
is the most crucial feature in detecting an early signal of
a fall. To capitalize on this knowledge, we again extracted
data starting from (S,) to the midpoint of S,, to explicitly
train a deep neural classifier on the transitional features to
reduce the reaction time of FDS further. Again, this 0.5 * Sy,
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window, called as the transitional window (T'w), is labelled as
”Fall_initiation” phase. Further, 4 * Ws of data is extracted
after the point when Impact phase ends to represent the
”Aftermath” phase. This is illustrated in figure 3.

Twenty seconds’ worth of ADL data is directly extracted
from the SisFall dataset for the activities mentioned in table I.
Activity IDs DO1 and D02 are combined and assigned a com-
mon label "Walking”. Similarly, DO3 and D04 are combined
as "Jogging”, and D05 and D06 are combined as ”Walk-
ing_stairs_updown”. Moreover, features of D18 and T10 are
extracted using the algorithm 1 and are assigned with the labels
”Stumble_while_walking” and ”Fall_Recovery”. This feature
enables the deep neural classifier to distinguish the Fall initia-
tion phase with Stumble_while_walking and the Fall_recovery
with the Impact on the ground. Stumble is a sudden imbalance
in gait and is similar to fall initiation; however, it does not
result in a fall, and the person recovers from it by achieving
the original state of walking equilibrium called Fall_Recovery.

Algorithm 1: Feature Extraction methodology:

Input : ACC.Y <« Fall_data
Output : Segmentation of Fall Phases
Initialize: Ws « Sampling_Frequency/4;
Size « length(ACCY);
1+ 0;
for j «+ 0 to Size do
Std_dev[i] + std(ACCY[j : j + Ws));
j—7+Ws;
11+ 1;
end
Sp < index(max(Std_dev)) — 3;
ADI + Fall_datal0 : Sy, x Ws];
Fall_Init < Fall_data[S, * Ws: (S, +4) « Ws];
Fall_Init < Fall_data[S, * Ws : (S, +2) « Ws];
Impact < Fall_data[(Sp +4) * Ws : (S, + 8) * Ws];
Aftermath < Fall_data[(Sp + 8) * Ws : end];
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. Fo1 ) s = TABLE II: Network Architecture and list of Hyperparameters.
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. 2 2 LSTM 256 - tanh
e . Dense 1 128 - ReLU
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T + 6 8 0 1.2 3 435862 o 1 21 3 a p Regularizer Dropout (rate = 0.2), L1L2, Early stopping
= TT . in L(PS: Pool Size, FS: Filter size)
g ) ‘ = M M Mg
g h—— L o W il *\
<, M‘W\WW ! 1 o . .
. 0 e A later time step. Gates in LSTM are used to overcome the

0o 1 7 o 1 8 o 2 8

3 a4 s a
Time (s) Time (s)

(b)

Fig. 2: The figure illustrates the behaviour of acceleration
along X-axis during different fall activities as described in
table I. (a) Represents fall activities of SisFall dataset, and (b)
represents fall activities of kFall dataset.

3 a
Time (s)

C. Network Architecture and Performance measures

A deep neural classifier based on the ensemble of 1D
CNN and LSTM, named FallNet, is used to develop our Pre-
Impact FDS. CNNs were traditionally used for image data
since they are excellent at capturing the spatial information
present in images. In contrast, LSTMs are ideal for learning
temporal dependencies and are commonly used for time-
series predictions. Hence, the combination of CNN and LSTM
is perfect for learning the Spatio-temporal features present
in the inertial human gait data. A 3D input in the form
of (samples, timesteps, features) was given to the model.
Each input sample contained one second’s worth of data
making the timesteps 200 (as sf was 200). In each timestep,
the tri-axial acceleration and angular velocity signals were
given, making the features set 6. The network architecture
and list of hyperparameters are given in table II.

A CNN learns by applying n filters (K7, Ko, ..., K,,) of
size k on the input data X, which is then passed on to a
non-linearity such as ReLU (equation 1). Each CNN layer
is followed by a max-pooling layer that downsamples the
convolution operation’s output.

CONVgyer1 = ReLU(Z K;x X' (1

The working of LSTM is governed by a set of equations
shown in algorithm 2. LSTM learns the temporal dependencies
by using the concept of cell states C*), which transfer the
relevant information down the sequence chain. Hence a feature
learned at the earlier time step will be remembered at a
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vanishing gradient problem [25] present in traditional recurrent
neural networks (RNNs). In algorithm 2, c), I'y,T'y,and I',
represents the candidate memory cell value, update gate, forget
gate, and the output gate, respectively. 2(*) represents the input
vector at time step t, h® is the hidden state at time step t,
and b is the bias value. The symbols W, U, and V' represent
the weight matrix for hidden-to-hidden, input-to-hidden, and
hidden-to-output connections, respectively, whereas the sym-
bols ¢ and o represent the sigmoid function and the Hadamard
product, respectively.

Our FDS is essentially a multi-class classifier, hence we
evaluated its performance using the traditional metrics such
as Precision (eq 2), Recall (eq 3), and F'1 — score (eq 4).
Precision is the measure of the ability of the model to
reduce false positives (F'P), whereas the Recall (also called
Sensitivity) is the measure of the ability of the model to
reduce false negatives (F'N). F'1—score is the harmonic mean
of Precision and Recall and is primarily used to compare the
performance of two classifiers. After the time instant at which
the fall is initiated (Traii_init), the lead time (Tjeqq) (eq 5) of
an FDS is defined as the time interval remaining after the fall
is detected (called as reaction time of an FDS (T.cqct)) and
before an impact on the ground (Timpact) [22].

. TP
Precision = TP FP 2)
TP
Recall = Zp TN &
2
F1— score = 4)

Recall=! + Precision—1

ﬂead = AT — Treach where AT = TFall,init - Timpact (5)
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Fig. 3: The figure illustrates the working of the proposed feature extraction methodology. Subplot (a) represents the temporal
feature segmentation of raw acceleration signals in the X, Y and Z axes of the accelerometer, and (b) represents the temporal
feature segmentation of raw angular velocity signals in the X, Y and Z axes of the gyroscope.

Algorithm 2: LSTM forward propagation.

for t < 0 to n do

C® = tanh(Uz® + Wh=1 4 b);
Iy =o(Uuz® + W,hED + b,
'y O'(Ufm(t) +th(t_1) + by
Ty = o(Upzx® + W,h(E1 4 b,);
C® =T,0C®) 4+ I'yo ct=n
h®) =T, o tanh(C'®);

il

)

s

end

V. RESULTS AND DISCUSSION

All the experiments were performed on a local workstation
using Python as a programming language. Standard Python
modules such as TensorFlow, Keras, Pandas, and NumPy were
utilized at the different stages of the experimentation. The
workstation had a 64GB main memory, Intel Xeon CPU, and
an Nvidia Quadro P1000 GPU with a 4GB memory.

To train FallNet, stratified K-Fold (K = 5) cross-validation
was utilized. Stratified sampling was used to handle the
class imbalance in our data. The list of hyperparameters is
given in table II. The model’s generalizability is increased by
feature fusion of SisFall and KFall datasets. To validate the
efficacy of FallNet, 20% data was reserved in each fold for
testing the model. The model has generalized exceptionally
well on unseen data, as evident from the confusion matrix
shown in the figure 4 and the classification report shown in
table III. The model was trained on two different instances
of Fall_initiation phase. The first instance is of AT duration
(=1s) and represents the point when the fall initiates to the
point of impact on the ground. The other instance is 0.5AT

and is representative of the transition from ADL — to —
Fall_init (T,,) to explicitly train the classifier on transitional
features. The reason for this special input is to specifically
train the classifier for the early detection of falls (Pre-Impact
Fall). The T, is of shape (100,6), which was interpolated to
(200,6) using the cubic spline interpolation before inputting to
the model. As evident from the results (table III and figure 4),
the model has performed exceptionally well in detecting the
Fall_initiation phase with a Sensitivity of 0.9924, implying
that the model has sufficiently learnt all the crucial fall features
to minimize the occurrence of F'N. Sensitivity is critical
for testing the efficacy of an FDS since a misinterpretation
of true occurrences of falls could prove to be lethal in real-
world situations. Moreover, FallNet has obtained an average
Precision, Sensitivity and F'1 — score of 97.53%, 97.52%
and 97.50%, respectively, for all the representative classes,
and an accuracy of 97.52% is obtained. Further, since the
T, is of 0.5AT duration, T}.¢q; becomes 0.5s as AT being
~1s, giving a sufficient Tj.,q of 0.5s (eq 5) to take a fall
prevention measure, thus outperforming the state-of-the-art
methodologies (refer to table V).

To validate our feature extraction methodology, we extracted
temporal features from the KFall dataset using algorithm 1
and verified the start of the Fall_initiation and Impact frame
with the temporal labels available in the KFall dataset [17].
Table IV shows the performance of our proposed feature
extraction methodology compared to the ground truth values
obtained from the KFall dataset. Pearson correlation coeffi-
cient (res¢,org) 1s utilized to establish the degree of similarity
between the estimated (est) values of Fall_initiation and
Impact frame with the ground truth (org) values. The same is
depicted graphically using density plots in figure 5. Except for
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Fig. 4: Confusion Matrix depicting the predictions obtained
on test data.

TABLE Ill: Performance of FallNet on test data.

Activity Precision | Recall | Fl-score | Support
Walking 0.9868 0.9803 0.9835 304
Jogging 0.9799 0.9899 0.9849 296
Walking_stairs_updown 0.9620 0.9870 0.9744 308
Stumble_while_walking 0.9455 0.9286 0.9369 56
Fall_Recovery 0.9792 0.8545 0.9126 55
Fall_Initiation 0.9834 0.9924 0.9879 658
Impact 0.9583 0.9787 0.9684 329
Aftermath 0.9778 0.9362 0.9565 329
Accuracy 0.9752 0.9752 0.9752 0.9752
macro avg 0.9716 0.9559 0.9631 2335
weighted avg 0.9753 0.9752 0.9750 2335

the activity T31, our methodology has performed exceptionally
well in the feature segregation for all fall activities.

We have demonstrated a more generalized and detailed
architecture of FDS, which is a closer representation of real-
life fall situations. Our model is trained on both SisFall and
KFall datasets and can distinguish between four ADLs and
four phases of fall (8-class classifier). In contrast, Musci
et al. [21] have presented a 3-class classifier with BKG,
ALERT and FALL classes and used only the SisFall dataset
for experimentation. Likewise, Yu et al. [20] and Wu et al.
[23] have both presented a 3-class classifier with (Non-fall,
Pre-impact fall, fall) and (Non-fall, backward fall, forward
fall) classes, respectively. Moreover, De Sousa et al. [22] have
presented an FDS which can only distinguish between fall and
no fall scenarios. Hence, our proposed model carries more dis-
criminative power and is better suited to real-life applications.
A classifier trained on different ADLs and various phases of
fall will learn the ADL — to — fall_init transitional features
and can detect the early signal of fall initiating from any of
the ADLs. Further, we have obtained a Tj.,q of 0.5s and
Sensitivity (eq3) of 99.24% in fall initiation phase, which

X i © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See htt s://www.ieee.org/i)ublications/rights/inde;(.html for more information.
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is much better than the lead time of 0.259s and Sensitivity
of 94.04% reported by De Sousa et al. [22] and the lead time
of 0.404s and Sensitivity of 95.5% reported by Wu et al.
[23]. A brief comparative analysis of our methodology with
the state-of-the-art approaches is shown in table V.

A. Limitations

One of the key limitations of our work and most of the
FDSs available in the literature is that the datasets utilised for
experimentation are emulated fall datasets. Thus, it remains an
open research question whether the emulated falls are a true
representation of actual falls. A correlation needs to be estab-
lished between the actual and emulated falls, which is only
possible if actual fall data is available, which is challenging
to acquire for apparent reasons. Also, since the subjects were
young and healthy, will the FDSs remain equally efficient for
the elderly population, which is the target population? These
questions need further investigation, thus opening doors for
future research directions.

Moreover, the proposed feature extraction methodology
described in algorithm 1 is only tested on a selected set
of activities as mentioned in table I. These are the most
common fall scenarios encountered in daily life. However, the
effectiveness of the algorithm 1 in other fall situations can
only be evaluated through further experimentation. Also, since
SisFall and KFall datasets are emulated datasets of young and
healthy subjects, the adaptability of the proposed algorithm
on real-world elderly fall data and pathological gait data
cannot be convincingly established in this study. Further, the
implementation issues of the proposed algorithm in resource-
constrained environments such as micro-controllers and sensor
networks are also not evaluated in this study.

V. CONCLUSION

In this work, we have presented a novel methodology for
temporal feature extraction from inertial fall data for different
fall scenarios and a deep neural classifier FallNet, a Pre-
Impact FDS, capable of detecting the Fall_initiation phase
with a Sensitivity and Flscore of 99.24% and 98.79%,
respectively, with an overall Accuracy of 97.52%. A concept
of transitional window (T,,) is introduced to improve the
reaction time (7,¢qc;) of the FDS, resulting in an impres-
sive lead time (T}eqq) of 0.5s, sufficient for fall prevention.
Teqct can be improved by tweaking the size of T,. The
feature extraction methodology is sufficiently validated with
the laboratory-verified results, and the proposed system is
thoroughly tested on two benchmark fall datasets. The initial
results are promising and open doors for further experimen-
tation in this direction. The key limitations of the proposed
work are also discussed.

This work can be utilised for building IoHT-based fall
detection and prevention devices for the elderly healthcare
sector. The work can be extended by training the proposed
FDS on pathological gait data for possible applications in gait
rehabilitation. Gait rehabilitation devices such as exoskeleton
robots and smart prosthetic legs can be equipped with fall
detection capabilities which will further aid in the original
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TABLE [V: Comparative analysis of proposed temporal feature extraction approach with the ground truth values [17].

Fall Initiation Frame Impact Frame
ACtiVity ID (refer to table I) Hest Horg Oest Oorg Test,org Hest Horg Oest Torg Test,org
T28 704.55 | 766.51 | 155.36 | 151.09 0.96 904.55 | 927.83 | 155.36 | 153.08 0.95
T30 532.68 612.07 116.36 112.3 0.95 732.68 760.52 116.36 116.96 0.94
T31 358.39 483.48 125.29 91.04 0.76 558.39 624.45 125.29 97.83 0.78
T32 526.73 597.37 123.21 124.95 0.98 726.73 736.97 123.21 133.9 0.96
T33 548.42 606.99 127.09 117.22 0.98 748.42 732.15 127.09 125.02 0.98
T34 721.1 782.6 143.11 137.02 0.97 921.1 909.26 143.11 140.26 0.98

(Hest, Oest: mean and standard deviation of estimated value (est), piorg, Oorg: mean and standard deviation of the ground truth value (org), rest,org:
correlation between estimated and the ground truth value.)
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Fall_initiation and Impact frame. The degree of similarity between the est and the org [17] values is established using
correlation coefficient (rest,org). Activity IDs T28, T30, T31, T32, T33 and T34 represent different fall activities as described

in Table L.
TABLE V: Performance comparison.
Reference DPF! Ticad (5) Sensitivity Accuracy
lz\’é‘;sgi[z‘ﬁ a1 3 Clagses o Speci- | pr. 93.419% | 96.06%
De zgg?s[azz? 2 classes | 0.259 PL: 94.04% | 95.86%
E‘B;’t al- 2020\ 3 fasses o Speci- | pr. 93789 | 94.48%
R l;t31 A sctasses | 0200 7| P95 S0% | 95.80%
Proposed 8 classes | 0.5 PI: 99.24% | 97,529,
M: 97.52%

T(DPF: Discriminative power of FDS, PI: Sensitivity in detecting Pre-
impact fall, M: Mean Sensitivity of the classifier)
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gait restoration. Further, more fall activities can be included
from diverse demographics to improve the generalizability of
the FDS.

In future work, we aim to build a low-cost Pre-Impact
FDS using a micro-controller such as Nano BLE sense and
tinyML framework to develop a non-invasive FDS for IoHT
applications to monitor the elderly population. Moreover, we
aim to test the efficacy of FallNet on humanoid fall data,
pathological gait data and real-world fall data. We also aim
to collect our own heterogeneous multi-sensor fall dataset.
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