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ABSTRACT Autonomous navigation of mobile robots in complex environments is challenging. Solving
the problems of inaccuracy localization and frequent tracking losses of mobile robots in challenging
scenes is beyond the power of point-based visual simultaneous localization and mapping (vSLAM). This
paper proposes a real-time and robust point-line based monocular visual inertial SLAM (VINS) system
for mobile robots of smart cities towards 6G. To extract robust line features for tracking in challenging
scenes, EDLines with adaptive gamma correction is adopted to fast extract a larger ratio of long line
features among all extracted line features. A real-time line feature matching approach is proposed to track
the extracted line features between adjacent frames without the need of computing descriptors. Compared
with LSD and KNN matching method based on LBD descriptors, the proposed method runs three times
faster. Furthermore, a tightly coupled sensor fusion optimization framework is constructed for accurate
state estimation, which contains point-line feature reprojection errors and IMU residuals. By evaluating
on public benchmark datasets, our VINS system has high localization accuracy, real-time performance
and robustness compared with other advanced SLAM systems. Our VINS system enables mobile robots

to locate accurately in smart cities with complex environments.

INDEX TERMS

SLAM, smart cities, mobile robots, sensor fusion, 6G.

I. INTRODUCTION

MART cities are consisted by intelligent mobile

robots, fully autonomous vehicles, ubiquitous Internet
of Things, and big data. Knowing its location in an envi-
ronment is a fundamental for a mobile robot autonomously
executing tasks in smart cities. Simultaneous localization
and mapping (SLAM) is a process by which a mobile
robot builds a map of the surrounding environment while
using the map to compute its location [1]. Nowadays,
5G wireless networks have been deployed widely to pro-
vide high-speed wireless communications with low latency
and support basic autonomous systems [2]. However, it is

debatable whether they can deliver high-level mobile robots
and fully autonomous vehicles in smart cities [3]. With mer-
its of higher data rates, lower latency and mobility of access
in 6G wireless networks, the technology of SLAM applied
in mobile robots and autonomous vehicles would drive the
progress of smart cities [4], [5], [6], [7].

Visual SLAM (vSLAM) plays an extremely important
role in the autonomous navigation [8], [9], [10], [11] of
mobile robots in smart cities. In real-world environments
of smart cities, there exist a large number of challenging
scenes containing weak textures and motion blur caused by
fast camera movements. Monocular vSLAM is not robust
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enough for navigation in smart cities due to blurred images
induced by fast motions and failure to align poses with
gravity direction. Sensor fusion schemes using a com-
bination of monocular cameras and inertial measurement
unit (IMU) are proposed to compensate the above defi-
ciencies. The fusion scheme is called monocular visual
inertial odometry (VIO) [12] or monocular visual inertial
SLAM (VINS) [13], [14], [15]. When tracking is lost caused
by blurred images during fast motion, prediction of feature
movements by IMU after pre-integration provides accurate
initial values for tracking subsequent images. The gravity
vector provided by the accelerometer of IMU transforms the
camera coordinate to the world coordinate for camera poses.
In addition, the zero bias of the IMU are corrected to effec-
tively eliminate the cumulative drift of the IMU by combing
rotations of image frames calculated by monocular vSLAM
with extrinsic matrices from camera to IMU. Thus, VINS
schemes are capable of improving localization accuracy and
robustness of tracking.

It is referred above that IMU enables tracking subsequent
images when tracking is lost. However, IMU is helpless
when enough robust features can’t be extracted in chal-
lenging scenes. Tracking success lies in extracting enough
features and correctly matching them in real time. Point
features are the most popular and common visual features
for fast extraction and matching. In challenging scenes, only
a small amount of point features can be extracted, which are
insufficient for continuous tracking and accurate localization.
Therefore, it is necessary to employ visual features with bet-
ter robustness in these scenes. Line features that contain rich
structural information and good invariabilities of light and
rotation [16], are capable of improving the robustness and
accuracy of tracking. However, extraction and tracking of
line features require excessive computational resources and
time consumption, leading to severe reduction of real-time
performance.

To address the above problems, we propose a real-time
and robust VINS system based on point-line features. It
is implemented with the help of VINS-Mono [13] that
is a state-of-the-art (SOTA) point-based VINS system.
We propose a real-time line feature tracking process and
then reconstruct the spatial lines in front-end. In back-
end, we construct a new cost function by tightly coupling
line reprojection errors, point reprojection errors and IMU
residuals. Finally, accurate camera states are obtained by
minimizing the cost function. Our main contributions are as
follows:

1) We propose a line feature extraction method
based on adaptive gamma correction and
EDLines [17]. We compare the proposed method with
LSD [18] and FLD [19] in terms of time consump-
tion and the ratio of long line features among total
quantity of line features. Experimental results show
that the proposed method can fast extract a larger
ratio of long line features among all line features,
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which is beneficial to the reduction of mis-matching
rate and time consumption of line feature matching.

2) We propose a real-time line feature matching method
based on the pyramidal Lucas-Kanade (LK) optical
flow method [20]. The matched line features are used
to reconstruct 3-D lines. Then, line reprojection errors
are tightly coupled with point reprojection errors and
IMU residuals to construct cost function for accurate
state estimation.

3) We evaluate the VINS system on two public datasets
of EuRoC MAV [21] and TUM-VI [22]. The results
demonstrate that our VINS system performs well
in terms of localization accuracy and real-time
performance when compared with existing advanced
technologies.

The rest of the paper is structured as follows. Section II
describes the related work. Section III presents an overview
of our VINS system. Section IV describes the methods for
line feature extraction, matching, parameterized representa-
tion and adding line reprojection errors as a new constraint
term to optimization framework. Section V provides the
results of the experimental evaluation. Section VI gives
conclusions for this paper.

Il. RELATED WORK

A. FEATURE-BASED METHODS

1) POINT-BASED METHODS

At present, the classical and excellent point feature extraction
algorithms are SIFT [23], SURF [24], ORB 0 and Shi-
Tomasi [26]. There are an increasing number of VSLAM
systems proposed using these algorithms. Among them,
ORB-SLAM3 [14] and VINS-Mono are recognized as
vSLAM benchmarks because they can be applied to a wide
range of scenes and have good localization accuracy.
However, in challenging scenes, such as motion blur and
weak textures, the localization accuracy of point-based
methods may be severely degraded and even tracking is lost.

2) POINT AND LINE-BASED METHODS

To ensure continuous tracking and improve the localiza-
tion accuracy of vSLAM in challenging environments, it
is important to introduce geometric features with geometric
constraints such as lines and surfaces. The earlier proposed
point-line based systems validate the improvement. PL-
SVO [27], a semi-direct monocular visual odometer combin-
ing point and line segmentation, improves the performance of
SVO [28] in low-texture environments. PL-StVO [29] intro-
duces the probability of point-line based on PL-SVO to
further improve the accuracy of camera state estimation and
supports stereo vision. PL-SLAM [30] implements a more
complete stereo visual SLAM process and achieves a more
accurate loop closure accuracy based on PL-StVO, which
uses ORB for the point feature extraction, LSD for the line
feature extraction and LBD [31]. to describe the line fea-
tures. In addition, for most point and line-based VIO/VINS
such as PL-VIO [12], PL-VINS [15] and Trifo-VIO [32],
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FIGURE 1. System overview.

line features are extracted by LSD, described by LBD, and
then matched frame by frame using KNN [33]. However,
both LSD extracting line features and LBD computing
descriptors are quite time-consuming, which seriously affects
the real-time performance of the system.

B. MULTI-SENSOR FUSION AND STATE ESTIMATION
METHODS

The current multi-sensor fusion methods for visual
information and inertial measurement information are
divided into two categories: tightly coupled and loosely cou-
pled. The loosely coupled algorithms use visual and IMU
information as two independent state variables for their own
state estimation, and then fuse the two state estimation
results, as in MSF [34]. The tightly coupled algorithms use
the raw data from visual and inertial measurements as the
same state variable, and then obtain a globally consistent
trajectory by means of state estimation, as in [35]. Although
the tightly coupled algorithms are complex to solve, they can
make full use of the sensor data and yield more accurate
state estimation.

In the back-end, the state estimation methods are clas-
sified into optimization-based methods and filtering-based
methods. The nonlinear optimization-based methods estab-
lish constraint relations between all state variables to be
optimized and construct the objective function that is
a least squares problem, and then solve it by bundle
adjustment (BA). For filtering-based methods, the state of
the current moment is only related to the state of the
previous moment. The filtering-based methods mainly are
based on extended Kalman filter (EKF) [36] and particle
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filter (PF) [37]. Although the computation of optimization-
based methods is higher than that of filtering-based methods,
higher accuracy can be obtained by optimization-based
methods.

The study of state estimation is mainly using tightly
coupled algorithms. The main systems of tightly coupled
algorithms based on filtering methods are ROVIO [38], S-
MSCKEF [39] and MSCKEF [40], all of which use Kalman
filtering as a framework for improvement. The main systems
of tightly coupled algorithms based on optimization meth-
ods are OKVIS [41] VINS-Mono, PL-VIO, and PL-VINS,
all of which use sliding window for optimization. Our VINS
system is an optimization-based tightly-coupled scheme,
which contains prior information, IMU residuals and point-
line reprojection error to construct the objective function and
marginalizes the redundant information when a new frame
is added. The optimization scheme is only to optimize the
keyframes, while using the Ceres Solver [42] developed by
Google to solve the nonlinear optimization problem.

lll. SYSTEM OVERVIEW

In this paper, an overview diagram of our VINS system
is shown in Fig. 1. It consists of five modules, which are
data preprocessing, initialization and local VIO in front-
end, loop closure detection and pose graph optimization in
back-end.

A. FRONT-END
1) DATA PREPROCESSING

The input data consists of camera images and IMU measure-
ment information. For image information, it is divided into
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two parallel processes that are point feature tracking and line
feature tracking. The point feature tracking process uses the
Shi-Tomasi method to extract point features and the pyrami-
dal LK optical flow method for point feature tracking. The
line feature tracking process uses the proposed line extrac-
tion method to extract line features and the proposed line
feature matching method for line feature tracking. For IMU
measurement information, the IMU data are pre-integrated
to obtain the pose, velocity, and rotation angle at the current
moment. Meanwhile, it is calculated that the IMU pre-
integration increments between adjacent frames, covariance
matrix and Jacobi matrix, which will be used in the back-end
optimization.

2) INITIALIZATION

Point and line landmarks are first recovered by triangulation
based on the projection of point and line features under two
camera frames. The spatial points and lines are represented
by the inverse depth [43] and the Pliicker coordinates [44],
respectively. Based on these 3D features, visual-only SFM
uses the PnP method [45] to estimate the poses of all frames
in the sliding window. Then, visual SFM is aligned with
IMU pre-integration to solve for the initialization parameters,
including scale, gravity, velocity and bias.

3) LOCAL VIO

After initialization, the visual and inertial state variables are
nonlinearly optimized in a sliding window of fixed size by
minimizing the objective function with visual and IMU con-
straints. Other constraint terms in the sliding window include
priori information generated from the marginalized frames
and loop closure constraint generated when a loop closure
is detected. In which, marginalization refers to removing
the oldest frame or the sub-new frame when a new frame is
added. Here, the marginalization is based on the Schur com-
plement method [46]. The non-linear optimization of local
VIO produces accurate states.

B. BACK-END

1) LOOP CLOSURE DETECTION

This module is designed to reduce the cumulative drift by
finding the connection between the current frame and the
candidate frames. BRIEF [47] is adopted to describe all
FAST [48] corner points and calculate similarity scores of
the current frame with all frames in the keyframe database.
After temporal and spatial consistency checks, DBoW2 [49]
returns candidate frames of loop closure detection. Among
the candidate frames, all keyframes are obtained when the
parallax between adjacent frames exceeds the threshold
or when the number of features tracked is less than the
threshold.

2) POSE GRAPH OPTIMIZATION

Pose graph optimization is activated when a loop closure
is detected. It is added to the pose graph when a keyframe
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is marginalized from the sliding window. This keyframe is
treated as a vertex of the pose graph, which establishes
sequence edges with the previous five vertexes. If a closed-
loop connection exists between this keyframe and other
keyframes, linking them forms a closed-loop edge. After
completing the construction of the pose graph, 4-DoF pose
graph optimization is performed. Based on the optimization
results, the past poses are updated by globally consistently
configured. Global pose graph optimization produces more
accurate poses.

IV. METHODOLOGY

In this paper, our VINS system is implemented with the
help of VINS-Mono, in which line features are adopted to
improve localization accuracy and robustness in challenging
scenes.

Therefore, we elaborate line feature processes including
extraction, matching, parameterized representation, reprojec-
tion errors and tightly coupling point-line reprojection errors
with IMU residuals for optimization.

A. LINE FEATURE EXTRACTION

The proposed line feature extraction algorithm is based on
the EDLines method and the adaptive gamma correction
technique [50]. As shown in Figs. 2 and 3, EDLines with
adaptive gamma correction plays an important role for line
feature extraction. To reduce abundant extracted short fea-
tures, we set a minimum length threshold of thirty-five.
In particular, a line with length more than sixty is called
a long line feature. Fig. 2(a) and (b) show the results of
line feature extraction using the EDLines method on the
images without gamma correction, where the total number
of line features extracted and the number of long line fea-
tures are too low. Fig. 3(a) and (b) show the results of
line feature extraction using LSD and FLD on the same
gamma-corrected image. LSD and FLD extract excessive
short features among all extracted line features. Besides,
the extraction of LSD takes a very long time. Fig. 2(c) and
Fig. 3(c) show the results of the proposed line feature extrac-
tion method, and the method fast extracts a large ratio of
long line features and small amount of short line features.
The experimental results show that the proposed line feature
extraction method has strong capability for extracting long
line features and high real-time performance. The following
is a validation of the role of the adaptive gamma cor-
rection method and the EDLines method for line feature
extraction.

1) ADAPTIVE GAMMA CORRECTION

In VINS-Mono, only contrast limited adaptive histogram
equalization (CLAHE) is used to enhance the contrast
of the input images. As shown in Fig. 2, CLAHE is
used to enhance image contrast rather than image lumi-
nance. As a result, limited number of line features are
extracted and most of them are short line features. Similarly,
only a limited number of point features can be extracted
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FIGURE 2. Visual feature extraction. (a), (b) and (c) are the results of extracting point-line features on the raw image, the image of CLAHE, and the gamma-corrected image,
respectively. The detection results are noted in yellow font in the upper left corner of each image.

FIGURE 3. A comparison of the three algorithms of line feature detection on a single image frame. (a), (b) and (c) are the results of line feature detection by LSD, FLD
and EDLines on the same gamma-corrected image, respectively. For intuitive comparison, the line features extracted by the three algorithms are drawn in green, red

and blue, respectively. The di

in the low-light images. Adaptive gamma correction can
dynamically adjust the luminance values of images. The
gamma value of adaptive gamma correction is determined
by the luminance of images. For low-light images, the
gamma value is always less than 1. A lower image luminance
results in a smaller gamma value and a higher luminance
improvement.

2) THE EDLINES LINE DETECTION METHOD

We compare three algorithms of LSD, FLD, and EDLines,
which are at present most widely used in vSLAM for line
feature extraction. As shown in Fig. 3 and Fig. 4, high
“Ratio” of long line features among all extracted line fea-
tures indicates that the extraction result for a certain frame
is superior. The robustness of line feature extraction algo-
rithm is reflected in a large ratio of long line features and
high real-time performance, which facilitates the reduction
of mismatch rate and time consumption for line feature
matching.

As shown in Fig. 3 and Fig. 4, we compare the above
three methods in terms of time consumption, ratio of long
line features and proper quantity testing on a single frame
and a whole sequence, respectively. The results show that
while time consumption of EDLines is comparable to that of
FLD, the ratio of long line features is higher than the other
two algorithms. In addition, the total quantity of extracted
line features by EDLines is not excessive.
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FIGURE 4. A comparison of the three algorithms of line feature detection on
V1_02_medium of the EuUROC MAV dataset.

B. LINE FEATURE MATCHING

Line feature matching usually requires line descriptors cal-
culated in advance from two adjacent frames as input. Most
VINS systems use LBD to describe line features, but LBD
is very complex and time-consuming. Therefore, we propose
a line feature matching method based on the pyramidal LK
optical flow method. The method requires no computation
of descriptors and significantly improves the speed of line
feature tracking.
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Algorithm 1 The Proposed Line Feature Matching Method
Input: I, I,, Lo = {E]5=(s§,¢), 0 <i <M}, L, =
{lp|lp (Sp’ ep) 0<k= Mp}’ n,ga Vf’ As, dipreshold, W
Output: [ and lm atchi) match each other
for i < 0 to M. do
for 57 to ¢f do
T ={£{ |0 < a < Nj}<As, v{
MP = {n |0 < j < N" < Nj}<T,
LK optical flow method
for j <— 0 to N;" do
D;;= {d,',j,k >00<k< Mp}<—Mp, L,
dpmin(i.jy <—min(Dj )
if dini j) < dinreshola then
is on /

i,j nearest(i, 1)

tc matched with 2
lf lp and

match(i)
Z5+ +
end
end
end
if Z{/N! > W then
£ and i match each other
end
end
end

n{, the pyramidal

nearest(i,j)

nearest(i,j) 35 the same line then

match(i)

LBD is an approach used to describe line features, which
can describe local appearance of lines well for matching.
LBD adopts the statistics of pixel gradients of all points in
line support region (LSR) and calculates the mean vector
and standard deviation of the statistics as descriptors, and
this process is complex and quite time-consuming to com-
plete. Pyramid LK optical flow tracking is an approach to
track feature points, which is implemented through pyramid
building, tracking, and iteration. Because of its simple steps
and sparse optical flow tracking with fast speed, pyramidal
LK optical flow tracking has good real-time performance.
For matching, the traditional KNN matching method com-
pares the similarity of line features of two adjacent frames
after LBD description. The proposed line feature matching
method is to find correspondences of points on line features
of two adjacent frames. The proposed line feature matching
method is shown in Algorithm 1 and described in detail as
follows.

For two adjacent frames I. and 1,, EDLines with adaptive
gamma correction extract line features for each of them,
represented by the sets L. = {I§|I{= (s{,¢), 0 < i < M}
and L, = {l’,:llp = (sf,;,e’,:), 0 < k < M,}, where s,e € R?
are the two endpoints of the line segment /. For each line
segment lf in the current frame /., its direction vector Vf is
calculated by its two endpoints. The normal vector n§ can
be obtained by the orthogonal constraint nl?TVf = 0. For
line [, we let s{, ef, v{ and As (default is 10) as start point,
end point, direction and steps, respectively. From s¢ to ey,
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FIGURE 5. Results of line feature tracking with the proposed line feature matching
method.

a set of points on [{ is selected for line feature matching.
We call the selected points “Tagged points”, denoted by the
set of points as T° = {f{ [0 < a < Nj}, where N} denotes
the maximum number of points selected on 5.

For points in T, point optical flow tracking is performed
by using the pyramidal LK optical flow method to find the
matched points in the previous frame /,. The matched points
are denoted by the set MP = {n1€j|0 <JSN"'< Nf}, where
N denotes the maximum number of points matched by the
“Tagged points” on .

In the previous frame I,, we calculate the shortest dis-
tance from each mp to all line segments in L,, denoted
by the set D;; = {dljk > 0|0 < k < M,}. We compare
all elements in D;; to get the shortest distance dyin( ij). If
dmin( ij) is not bigger than dupyesnoia (default is 1), we con-
sider that the matching point mp is on the corresponding
line segment ln carest(i))* We also consider the corresponding
“Tagged points” 7; , matched with the line ln carest(i.j)"

For line segment [{, suppose there are Z7 “Tagged points”
matching the same hne segment lm atch(i)” If Z¢ /Nf > W (we
set it to 0.5), then we consider that lC and lmmch(l) match
each other. The results of line feature matchlng are shown
in Fig. 5, where we connect midpoints of the matched line
pairs in red lines to indicate successful match.

C. SPATIAL LINE REPRESENTATION

In point line-based vSLAM, spatial lines need to be recon-
structed and used to optimization in back-end. In two
processes, the Pliicker coordinates representation is used for
triangulation and the orthogonal representation is used for
optimization.

1) PLUCKER COORDINATES REPRESENTATION

As shown in Fig. 6(a), give the two endpoints s and e of
spatial line segment [/, the Pliicker coordinates of spatial line
L can be described as

e[ ) [er o
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(a) (b)

FIGURE 6. (a) Geometric change of lines. (-)w, (-)01 and (-)02 are world frame
and two camera frames, respectively. Ic1 and I¢;2 are the normalized planes of the two
camera frames, respectively. (b) Reprojection error model of line features. I¢ is
camera imaging plane.

where n € R3 is the normal vector of the plane 7, deter-
mined by the world frame origin and the spatial line L,
v € R3 is the direction vector of the line £, and both of
them satisfy the orthogonal constraint n’v = 0. m and n are
two non-zero constants.

Suppose the line segment [ is observed by two cam-
era frames c; and c¢p. The line segment / is projected onto
the normalized plane /., and the projection points of its two
endpoints are s; € R? and ¢; € R3. Give the coordinates
O = (xcl,ycl,zcl)T of the origin of cj, the coordinates of
plane ., = (7', 7y, 75", ;") can be obtained by

{ (", 75t w3 1T = [s1]xer,
[ Cl C1 Cl (2)
Ty =Ty Xep + 75 Yoy + 73 Zcqs

where [ - ]« denotes the skew-symmetric matrix of a three-

dimensional vector. Similarly, the coordinates of plane 7., =

(rrlcz, nzcz, ngz, rrjz) can be obtained. According to [51], the
dual Pliicker matrix L* can be represented as
x [n]x v T T

b= [—VT 0 } = Talley = Tealley: 3

L* is a skew-symmetric matrix with six non-zero ele-

ments. Therefore, comparing the 4-DoF of a spatial line,

both the Pliicker coordinates and the Pliicker matrix are
over-parameterized representations.

2) ORTHONORMAL REPRESENTATION

In order to minimize computational resource and improve
convergence in back-end nonlinear optimization, we use the
four-parameter orthonormal minimal representation proposed
by Bartoli and Sturm [44]. The orthonormal representation
(U, W) € SO(3)xSO(2) of the spatial line £ can be obtained
by using the QR decomposition on the matrix [n|v]:

w1 0 wy —w
OR(n|v) =U| 0 w wawz[l 2}(@
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where wi and wy are greater than zero. In addition, the trans-
formation from the Pliicker coordinates to the orthonormal
representation can also be obtained by

n \ nxv ||n|| O
[“|V]=[WWW] 8 ||(;’|| . )

Let R(0) = U, R(#) = W, according to (4) and (5), we get
R®) =U= [ll—gn ™ T ]

| cos(0) =sin(0) |  |wi —wp
R@O) =W = |:sin( 0) cos( 9) i| - [wz wi i|

—wq. ©

([l

_ 1 [mn
VinZ + w2 LIV
W contains the information about the distance from the ori-
gin Oy, to the line £. Because this distance can be obtained
and represented by d = |n||/||v]| = wi/wa. It follows that
the scalar 6 € (0, w/2) can be used to adjust the distance d.
In addition, # € R3 can be used to regulate the rotation
of a spatial line around the three axes of x-y-z at a con-
stant distance d. Therefore, we can define the orthonormal
representation in terms of a four-parameter vector:

o=@ 0. (7

Similarly, given the orthonormal representation (U, W), the
Pliicker coordinates can be obtained by the transformation

formula:
| wiag
c—[mm} ®)

where wi, wo, u; and up can be obtained from (6) and u;
is the ith column of U.

D. LINE FEATURE REPROJECTION ERROR

The Pliicker coordinates can be used for linear coordinates
transformation and reprojection representation. Spatial line
transformation from the world frame to the camera frame
can be achieved by the Pliicker coordinates transformation

I ne | | Rew [tew]xRew || my
=] ] e

where R.,, € SO(3) is the rotation matrix and t., € R3 is
the translation vector.

As shown in Fig. 6(b), the projection line I obtained by
projecting the spatial line £, of the camera frame onto
camera imaging plane can be represented as

I=1[h,hb, 5] =Kn,, (10)

where K is the intrinsic matrix of camera. The reprojection
error model of the line is deterrpin/ed by modeling the vertécal
distance from the endpoints (s , e ) of the matched line [ to
the projected line I:

T

s'l e'l
—, ,(11)
Ji+5E i+
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where ’ij‘ is the observation of the ith camera frame c; to
the jth spatial line £; and x is a full-state vector.

E. SLIDING WINDOW OPTIMIZATION MODEL
The full state vector x in the sliding window is defined as

X =[x1, X, ALy A, O1, -+, O

T
xi = [pl. vy, ay, b.82] i € (L, (12)

where x; is the state vector of the IMU at the time of shooting
the ith camera frame. It contains the position, velocity, and
direction of the IMU in the world frame and the accelerom-
eter bias and gyroscope bias in the IMU body frame. n, m
and / denote the total number of keyframes, the number of
feature points and the number of line features in the slid-
ing window, respectively. A; is the inverse depth of the jth
feature point from its first observed keyframe and used to
parameterize that point. Oy is the orthonormal representa-
tion of the kth line feature, which is used to parameterize
the line.

Based on the cost function of the back-end visual inertial
BA of VINS-Mono, we introduce the reprojection errors of
line features and modify the objective function in the sliding
window as

€ = mind |ry —Hpx|*+ 3" |G 0] +
keB

. 2
> P(Hrc@?,x) Pc/-> +
(Lj)eC !
Z p(”rg(z\;'k,x) 12)?k> +
> o(lre@r x.ar B

(i,kyeLl
(I,v)eLP

2
bic

P k
bt

2

w )t (13)
where {r,, H,} is the priori information obtained by
preserving the states when marginalizing old frames.
rg@ Z:H,x) is the IMU measurement residual. rc(Z ;j . X)
and rpo(Z f", Xx) are the reprojection errors of the point fea-
tures and line features, respectively. rc(@;, x.q ). p}) is the
loop closure constraint added to the sliding window when
a loop closure is detected, where LP is the set of observations
of features retrieved in a loop closure frame. (I, v) denotes
the /th feature point observed in the vth loop closure frame.
q).pY) is the pose of the loop closure frame. p(-) is the
Huber norm [52] that is a loss function, which is defined as

s<1,

N
p(s)z{zﬁ—l s> 1.

which is used to obtain a higher optimization accuracy by
suppressing the effect of noise.

(14)

V. EXPERIMENTS
To evaluate the trajectory accuracy and real-time
performance of the proposed system, we choose to perform
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extensive experiments on the public EuRoC MAV dataset
and the public TUM-VI dataset. The EuRoC MAV dataset
consists of simultaneous pinhole stereo images, IMU mea-
surement information and ground truth. All the data are
collected by the Swiss Federal Institute of Technology Zurich
using small UAVs in three indoor scenes including Machine
Hall and Vicon Room 1, 2. The difference is that the stereo
images of the TUM-VI dataset are collected by a fish-
eye camera, which is a novel VI dataset proposed by the
Technical University of Munich, Germany. The TUM-VI
dataset contains several scenes, such as rooms, corridors,
and outdoors.

After obtaining trajectories of the sequences of two
datasets, we evaluate the performance of the proposed system
using EVO tool. EVO is evaluating odometry or SLAM
algorithms, which includes data evaluation and visualiza-
tion functions. All experiments were performed on PC with
AMD Ryzen 5 PRO @3.70 GHz CPU, 16GB RAM and
implemented based on Ubuntu 18.04 and ROS Melodic.

A. TRAJECTORY ACCURACY

In this section, the purpose is to verify the ability of our
VINS system to estimate the camera poses by evaluating
trajectory accuracy. We select some advanced VIO systems
and VINS systems to compare with our proposed system.
As shown in Table 1, ROVIO, PL-VIO and OURS(w/0)
are VIO systems and PL-VINS, VINS-Mono and OURS are
VINS systems. Notice that VINS is a SLAM system which is
generated by adding a loop closure module to VIO. Similarly,
PL-VIO and PL-VINS are also obtained by introducing line
features with the help of VINS-Mono. However, the different
methods of line feature extraction, description and matching
will cause a large gap in the trajectory accuracy and real-time
performance, as can be seen from the following results.

Table 1 shows the comparison of the localization accu-
racy of these systems mentioned above by evaluating the
root-mean-squared error (RMSE) of the absolute trajectory
error (ATE). The “x” indicates that the system tracks abnor-
mally on that sequence, for example, only partial trajectories
are obtained or the error of the complete trajectory is quite
large. The results show that our VINS system has the highest
accuracy among all compared systems on most sequences
of the EuRoC MAV dataset. And our system without loop
closure OURS(w/0) has the lowest error in the comparison
of VIO systems. In particular, the advantage is more obvi-
ous in the Vicon Room sequences that have weak textures,
motion blur and fast motions. This indicates that our VINS
system is robust when running in such challenging scenes,
as will be described in detail in Section V-B.

As shown in Fig. 7, we compare the distances between
the trajectories of the three VINS systems on sequences of
V1_02_medium and V1_03_difficult with the ground truth,
and the results in the XY plane. Although these trajectories
are very similar, it can be seen that the trajectories obtained
by our VINS system have the closest distance to the ground
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TABLE 1. Localization accuracy with several VIO and VINS systems tested on the EuUROC MAV dataset. The RMSE of the absolute trajectory error (m) is used for evaluation.

ROVIO PL-VIO PL-VINS VINS-Mono OURS OURS(w/0)

MH_01_easy 0.2773 0.1358 0.0761 0.0844 0.0719 0.1917
MH_02_easy X 0.1418 0.0624 0.0558 0.0755 0.1939
MH_03_medium 0.4453 0.2646 0.0627 0.0797 0.0651 0.2059
MH_04_difficult 0.7907 0.3633 0.1009 0.1341 0.0990 0.2685
MH_05_difficult 1.0708 0.3068 0.1550 0.1648 0.1318 0.2795
V1 _01_easy 0.1594 0.0827 0.0446 0.0552 0.0430 0.0806
V1_02_medium 0.1315 x 0.0612 0.0635 0.0398 0.1079
V1_03_difficult 0.1984 0.2017 0.1824 0.2011 0.1006 0.1115
V2 _01_easy 0.2416 0.0876 0.0601 0.0966 0.0512 0.0741
V2_02_medium 0.4176 0.1348 0.0857 0.1304 0.0764 0.1095
V2_03_difficult 0.2097 0.3004 0.1360 0.2175 0.1397 0.2615
Mean 0.3942 0.2020 0.0934 0.1166 0.0813 0.1713

* The best result or the smallest error is bold.

* The symbol “x” indicates that the system tracks abnormally on the sequence and the evaluated result is not indicative, so it is discarded.
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FIGURE 7. A comparison of the trajectories obtained by VINS-Mono, PL-VINS and OURS on (a) V1_02_medium and (b) V1_03_difficult of the EuRoC MAV dataset with the

ground truth.

truth. From the above experiments on the EuRoC MAV
dataset, our VINS system has high localization accuracy.

B. ROBUSTNESS TESTING IN CHALLENGING SCENES
In this section, we evaluate the robustness of our VINS
system by evaluating the RMSE of trajectories obtained on
sequences with challenging environmental factors. The local-
ization accuracy of the three VINS systems is the highest as
seen in Table 1, so we only compare their robust performance
in this section. In Table 2, the RMSE of the ATE on the
EuRoC MAV dataset is derived from Table 1. The RMSE of
VINS-Mono on the TUM-VI dataset is derived from [22].
The RMSEs of both PL-VINS and our VINS system are
evaluated on the same PC.

As shown in Table 2, the experimental results of the
robustness test indicate that the point-line based system is
more applicable than the point-based system in challenging
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scenes as seen from the apparent improvement in localization
accuracy. Moreover, the proposed system is able to uti-
lize robust point-line features in challenging scenes so as
to improve the localization accuracy.

C. REAL-TIME PERFORMANCE

As mentioned above, PL-VIO, PL-VINS and our VINS
system are obtained by introducing line features with the
help of VINS-Mono. The purpose of this section is to the
time consumption of the three systems for line feature extrac-
tion, line feature description and matching and the whole line
feature tracking process, respectively.

For line feature extraction, PL-VIO and PL-VINS use
the traditional LSD method and the improved LSD method
integrated by OPENCYV, respectively. Similarly, PL-VIO and
PL-VINS use the traditional KNN matching method based
on the LBD description. Our VINS system uses the proposed
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TABLE 2. Robustness testing of our VINS system in challenging scenes of the EURoC MAV dataset sequences and the TUM-VI dataset sequences. The RMSE of the ATE (m) is

used for evaluation.

Dataset Sequence VINS-Mono PL-VINS  OURS | Improvement Challenging scenes
MH_05_difficult 0.16 0.16 0.13 19% Partly dark scene
V1_02_medium 0.06 0.06 0.04 33% Weak texture, Fast motion,

EuRoC MAV
V1_03_difficult 0.20 0.18 0.10 50% Motion blur
mean 0.14 0.13 0.09 36% -
Outdoors? 133.46 106.60 100.26 25% IMulti-dynamic objects, Violent rotation at
the start and end
Dim scene, Barren land and forest.
0, tl el
Outdoors3 36.99 30.18 2651 28% Violent rotation at the start and end
Dim scene, Barren land and forest.
0, tl el
Outdoors6 133.60 9944 91.85 31% Violent rotation at the start and end
Frequent illumination changes, Outside
TUM-VI Magistralel 2.19 1.89 1.65 25% hallway (weak texture), Violent rotation
at the start and end
Frequent illumination changes, Few
Magistrale4 5.12 2.69 1.28 75% dynamic objects, Barren land and forest,
Violent rotation at the start and end
. Dim scene, Few dynamic objects, Violent
0, ki £l
Magistrale5 0.85 1.36 0.61 28% rotation at the start and end
mean 52.04 40.36 37.03 29% -

* The best result or the smallest error is bold.
(RMSE of VINS-Mono — RMSE of OURS) / RMSE of VINS-Mono.

* Improvement =
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FIGURE 8. Running times of OURS, PL-VIO and PL-VINS on each part of line feature tracking process tested on V1_02_medium.

TABLE 3. Average time consumption (ms) per frame of VINS-Mono, PL-VIO, PL-VINS and the proposed system on V1_02_medium of the EuRoC MAV dataset.

VINS-Mono PL-VIO PL-VINS OURS
Whole Point Tracking Process 15 15 15 15
Line Detection X 57 31 17
Line Description and

Line Matching x 53 40 17

Whole Line Tracking Process x 115 89 41
Local VIO 42 48 46 46
Loop Closure 200 X 200 200

* The symbol “x” indicates that the system does not have the process.

line feature extraction method to extract line features and the
proposed line feature matching method to track line features.

It is noticed that our system does not need to compute
descriptors. We compare the total time for describing and
matching, and the time consumption of our VINS system
for describing is zero. As shown in Fig. 8, our VINS system
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extracts line features and tracks line features and the whole
line tracking process on each frame in about 20, 20, and
40 ms. PL-VINS and PL-VIO take about two and three
times longer, respectively, than our VINS system for these
three processes. In terms of the stability of the time con-
sumption on each frame, PL-VIO and PL-VINS have many
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Time consumption of detecting the line features on EuRoC MAV
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FIGURE 9. Average running time of OURS, PL-VIO and PL-VINS on each part of line
feature tracking process tested on all sequences of the EuRoC MAV dataset.

outliers, while our VINS system fluctuates steadily around
a certain value. As shown in Fig. 9, in terms of average time
consumption per frame on eleven sequences, the highest real-
time performance improvement of our VINS system is 0.21,
0.26, 0.27 times that of PL-VIO on V2_03_difficult and
0.56, 0.41, 0.46 times that of PL-VINS on V1_02_medium
for line feature extraction, tracking and the whole tracking
process, respectively. As shown in the experiments of the
real-time performance, our VINS system has the best real-
time performance than the other two systems in extracting
line features, describing and matching line features and the
whole line feature tracking process.

Table 3 provides the time consumption of the three
systems for line tracking process and other processes on
V1_02_medium of the EuRoC MAV dataset. The three point-
line based systems are obtained by introducing line features
with the help of VINS-Mono. Except for the line tracking
process, the other processes of the four systems in Table 3 are
very similar, so their time consumption in these processes
are very close. However, the proposed system run more than
three times faster to extract and match line features than
PL-VIO. And the proposed system is about two times as
fast as PL-VINS to extract and match line features.

1960

VI. CONCLUSION

This paper presents a real-time and robust point-line based
monocular VINS system. The VINS system is evaluated by
on the public datasets of EuRoC MAV and TUM-VI. In
the front-end, EDLines with adaptive gamma correction has
advantages of extracting a larger ratio of long line features in
real time when compared with LSD and FLD. The proposed
line feature matching method has fast tracking speed when
compared with the KNN method based on LBD descriptors.
In the back-end, accurate camera states are obtained by min-
imizing the cost function containing point-line reprojection
errors and IMU residuals. The experimental results show
that our VINS system has higher localization accuracy and
real-time performance than other advanced systems. In addi-
tion, our VINS system shows good robustness in challenging
scenes.
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